- shall be placed until the depth and character of the foundation soils have been inspected and approved by the materials testing consultant.
- B. The subgrade shall be free of frost before concrete placing begins. If the temperature inside a building where concrete is to be placed is below freezing, the temperature shall be raised and maintained above 50° long enough to remove all frost from the subgrade.
- C. The subgrade shall be moist at the time of concreting. If necessary, the subgrade shall be dampened with water in advance of concreting, but no free water shall remain standing on the subgrade nor any muddy or soft spots when the concrete is placed.
- D. Thirty-pound felt-paper shall be provided between edges of slabs-on-ground and vertical and horizontal concrete surfaces, unless otherwise indicated on the Drawings.
- E. Contraction joints shall be provided in slabs-on-ground at locations indicated on the Drawings. Contraction joints shall be installed as per Section 03290 Joints in Concrete.
- F. Floor slabs shall be screeded level or pitched to drain as indicated on the Drawings. Finishes shall conform with requirements of Section 03350 Concrete Finishes.

3.06 PLACING CONCRETE UNDERWATER (CLASS A4 CONCRETE)

- A. Placing concrete underwater (tremie concrete) will be permitted only when shown on the Drawings. Concrete deposited under water shall be carefully placed in a compacted mass in final position by means of a tremie, a closed bottom dump bucket or other approved method. Care must be exercised to maintain still water at the point of deposit. Concrete shall not be placed in running water. Underwater formwork shall be watertight. The consistency of the concrete shall be regulated to prevent segregation of materials. The method of depositing concrete shall be regulated such that the concrete enters the mass of the previously placed concrete from within, displacing water with a minimum disturbance to the surface of the concrete.
- B. Tremie shall consist of a tube having a diameter of not less than 10 inches and constructed in sections having flanged couplings fitted with gaskets. The tremie shall be supported to permit free movement of the discharge and over the entire top surface of the work and shall permit rapid lowering when necessary to choke off or retard the flow. The discharge end shall be sealed, and the tremie tube kept full to the bottom of the hopper. When a batch is dumped into the hopper, the tremie shall be slightly raised, but not out of the concrete at the bottom, until the batch discharges to the bottom of the hopper. The flow shall then be stopped by lowering the tremie. The flow shall be continuous until the placement has been completed.

3.07 PLACING CONCRETE UNDER PRESSURE

A. Where concrete is conveyed and placed by mechanically applied pressure, the equipment shall have the capacity for the operation. The operation of the pump shall produce a continuous stream of concrete without air pockets. To obtain the least line

resistance, the layout of the pipeline system shall contain minimum bends with no change in pipe size. If two sizes of pipe must be used, the smaller diameter should be used at the pump end and the larger at the discharge end. When pumping is completed, the concrete remaining in the pipelines shall be ejected in such a manner that there will be no contamination of the concrete or separation of the ingredients.

- B. Priming of the concrete pumping equipment shall be with cement grout only. Use of specialty mix pump primers or pumping aids will not be allowed.
- C. No aluminum parts shall be in contact with the concrete during the placing of concrete under pressure.
- D. Prior to placing concrete under pressure, the Contractor shall submit the concrete mix design together with test results from a material's testing consultant proving the proposed mix meets all requirements. In addition, an actual pumping test under field conditions is required prior to acceptance of the mix. This test requires a duplication of anticipated site conditions from beginning to end. The batching and truck mixing shall be the same as will be used during construction, and the pipe and pipe layouts will reflect the maximum height and distance contemplated. All submissions shall be subject to approval by the Engineer.
- E. If the pumped concrete does not produce satisfactory end results, the Contractor shall discontinue the pumping operation and proceed with the placing of concrete using conventional methods.
- F. The pumping equipment must have two cylinders and be designed to operate with one cylinder only in case the other one is not functioning. In lieu of this requirement, the Contractor may have a standby pump on the site during pumping.
- G. The minimum diameter of the hose (conduits) shall be four inches.
- H. Pumping equipment and hoses (conduits) that are not functioning properly shall be replaced.
- I. Concrete samples for quality control in accordance with Article 3.11 will be taken at the placement (discharge) end of the line.

3.08 ORDER OF PLACING CONCRETE

A. To minimize the effects of shrinkage, the concrete shall be placed in units as bounded by construction joints shown on the Drawings and maximum lengths as indicated on Drawings. Where required on the Drawings and wherever else practical, the placing of such units shall be done in a strip pattern in accordance with ACI 302.1. A minimum of 72 hours shall pass prior to placing concrete directly adjacent to previously placed concrete.

3.09 CONCRETE WORK IN COLD WEATHER

- A. Cold weather concreting procedures shall conform to the requirements of ACI 306.1.
- B. The Engineer may prohibit the placing of concrete at any time when air temperature is 40°F. or lower. If concrete work is permitted, the concrete shall have a minimum temperature, as placed, of 55°F. for placements less than 12" thick, 50°F. for placements 12" to 36" thick, and 45°F. for placements greater than 36" thick. The temperature of the concrete as placed shall not exceed these minimum values by more than 20°F, unless otherwise approved by the Engineer.
- C. All aggregate and water shall be preheated. Precautions shall be taken to avoid the possibility of flash set when aggregate or water are heated to a temperature greater than 100°F. to meet concrete temperature requirements. The addition of admixtures to the concrete to prevent freezing is not permitted. All reinforcement, forms, and concrete accessories shall be defrosted by an approved method. No concrete shall be placed on frozen ground.

3.10 CONCRETE WORK IN HOT WEATHER

- A. Hot weather concreting procedures shall conform to the requirements of ACI 305.1.
- B. When air temperatures exceed 85°F., or when extremely dry or high wind conditions exist even at lower temperatures, the Contractor and the Contractor's concrete supplier shall exercise special and precautionary measures in preparing, delivering, placing, finishing, curing, and protecting the concrete mix. The Contractor shall consult with the Engineer regarding such measures prior to each day's placing operation, and the Engineer reserves the right to modify the proposed measures consistent with the requirements herein. All necessary materials and equipment shall be in place prior to each placing operation.
- C. Preparatory work at the job site shall include thorough wetting of all forms, reinforcing steel and, in the case of slab pours on ground or subgrade, spraying the ground surface on the preceding evening and again just prior to placing. No standing puddles of water shall be permitted in those areas which are to receive the concrete.
- D. The temperature of the concrete mix when placed shall not exceed 95°F.
- E. Temperature of mixing water and aggregates shall be carefully controlled and monitored at the supplier's plant, with haul distance to the job site being considered. Stockpiled aggregates shall be shaded from the sun and sprinkled intermittently with water. If ice is used in the mixing water for cooling purposes, the ice must be entirely melted prior to addition of the water to the dry mix.
- F. Delivery schedules shall be carefully considered in advance to ensure concrete is placed as soon as practical after mixing. For hot weather concrete work (air temperature greater than 85°F), discharge of the concrete to its point of deposit shall be completed

within 60 minutes from the time the concrete is batched, unless workability-retaining admixtures are included and approved by the Engineer.

G. The Contractor shall arrange for an ample work force to be on hand to accomplish transporting, vibrating, finishing, and covering of the fresh concrete as rapidly as possible.

3.11 QUALITY CONTROL

A. Field Testing of Concrete

- The Contractor shall coordinate with the Engineer's project representative the onsite scheduling of the materials testing consultant personnel as required for concrete testing.
- 2. Concrete for testing shall be supplied by the Contractor at no additional cost to the City, and the Contractor shall assist the materials testing consultant in obtaining samples. The Contractor shall dispose of and clean up all excess material.

B. Consistency

- 1. The consistency of the concrete will be checked by the materials testing consultant by standard slump cone tests. The Contractor shall make any necessary adjustments in the mix as the Engineer and/or the materials testing consultant may direct and shall upon written order suspend all placing operations in the event the consistency does not meet the intent of the specifications. No payment shall be made for any delays, material, or labor costs due to such occurrences.
- 2. Slump tests shall be made in accordance with ASTM C 143. Slump tests will be performed as deemed necessary by the materials testing consultant and each time compressive strength samples are taken.
- 3. Concrete with a specified nominal slump shall be placed having a slump within 1" (higher or lower) of the specified slump. Concrete with a specified maximum slump shall be placed having a slump less than the specified slump.

C. Density

- 1. Samples of freshly mixed concrete shall be tested for density by the materials testing consultant in accordance with ASTM C 138.
- 2. Density tests will be performed as deemed necessary by the Engineer and each time compressive strength samples are taken.

D. Air Content

1. Samples of freshly mixed concrete will be tested for entrained air content by the materials testing consultant in accordance with ASTM C 231.

- 2. Air content tests will be performed as deemed necessary by the materials testing consultant and each time compressive strength samples are taken.
- In the event test results are outside the limits specified, additional testing shall occur. Admixture quantity adjustments shall be made immediately upon discovery of incorrect air entrainment.

E. Compressive Strength

- Samples of freshly mixed concrete will be taken by the materials testing consultant and tested for compressive strength in accordance with ASTM C 172, C 31, and C 39, except as modified herein.
- 2. In general, one sampling shall be taken for each placement more than five (5) cubic yards, with a minimum of one (1) sampling for each day of concrete placement operations, or for each fifty (50) cubic yards of concrete, or for each 5,000 square feet of surface area for slabs or walls, whichever is greater.
- 3. Each sampling shall consist of at least five (5) 6x12 cylinders or (8) 4x8 cylinders. Each cylinder shall be identified by a tag, which shall be hooked or wired to the side of the container. The materials testing consultant will fill out the required information on the tag, and the Contractor shall satisfy themselves that such information shown is correct.
- 4. The Contractor shall be required to furnish labor to the City for assisting in preparing test cylinders. The Contractor shall provide approved curing boxes for storage of cylinders on site. The insulated curing box shall be of sufficient size and strength to contain all the cylinders made in any four consecutive working days and to protect the specimens from falling over, being jarred, or otherwise disturbed during the period of initial curing. The box shall be erected, furnished, and maintained by the Contractor. The box shall be equipped to provide the moisture conditions and to regulate the temperature necessary to maintain the proper curing conditions required by ASTM C 31. The curing box shall be placed in an area free from vibration such as pile driving and traffic of all kinds and such that all cylinders are shielded from direct sunlight and/or radiant heating sources. No concrete requiring testing shall be delivered to the site until the storage curing box has been provided. Cylinders shall remain undisturbed in the curing box until ready for delivery to the testing laboratory, but not less than sixteen hours.
- 5. The Contractor shall be responsible for maintaining the temperatures of the curing box during the initial curing of cylinders with the temperature preserved between 60°F and 80°F as measured by a maximum-minimum thermometer. The Contractor shall maintain a written record of curing box temperatures for each day the curing box contains cylinders. Temperature shall be recorded a minimum of three times a day with one recording at the start of the day and one recording at the end of the day.

- 6. When transported, the cylinders shall not be thrown, dropped, allowed to roll, or be damaged in any way.
- 7. Compression tests shall be performed in accordance with ASTM C 39. For 6x12 cylinders, two test cylinders will be tested at seven days and two at 28 days. For 4x8 cylinders, three test cylinders will be tested at seven days, three at 28 days. The remaining cylinders will be held to verify test results, if needed. Additional test cylinders shall be made when the Contractor anticipates performing additional compression tests earlier than seven days, or at any other interval thereof.

F. Evaluation and Acceptance of Concrete

- 1. Evaluation and acceptance of the compressive strength of concrete shall be according to the requirements of ACI 214, ACI 318, and ACI 350.
- 2. The strength level of concrete will be considered satisfactory if the following conditions are satisfied.
 - Every arithmetic average of any three consecutive strength tests equals or exceeds the minimum specified 28-day compressive strength for the mix (see Article 2.11).
 - b. No individual compressive strength test result falls below the minimum specified strength by more than 500 psi.
- 3. If any of the conditions listed above are not met, the mix proportions shall be corrected for the next concrete placing operation.
- 4. If condition 3.11.F.2.b is not met, additional tests in accordance with Article 3.11, Paragraph H shall be performed.
- 5. When a ratio between 7-day and 28-day strengths has been established by these tests, the 7-day strengths shall subsequently be taken as a preliminary indication of the 28-day strengths. Should the 7-day test strength from any sampling be more than 10% below the established minimum strength, the Contractor shall:
 - a. Immediately provide additional periods of curing in the affected area from which the deficient test cylinders were taken.
 - b. Maintain or add temporary structural support as required.
 - c. Correct the mix for the next concrete placement operation, if required to remedy the situation.
- 6. All concrete which fails to meet the ACI requirements, and these specifications is subject to removal and replacement at no additional cost to the City.

G. When non-compliant concrete is identified, test reports shall be sent immediately to the Engineer for review.

H. Additional Tests

- 1. When ordered by the Engineer, additional tests on in-place concrete shall be provided and paid for by the Contractor.
- 2. If the 28-day test cylinders fail to meet the minimum strength requirements as outlined in Article 3.11, Paragraph F, the Contractor shall have concrete core specimens obtained and tested from the affected area immediately.
 - a. Three cores shall be taken for each sample in which the strength requirements were not met.
 - b. The drilled cores shall be obtained and tested in conformance with ASTM C 42. The tests shall be conducted by a materials testing consultant approved by the Engineer.
 - c. The location from which each core is taken shall be approved by the Engineer. Each core specimen shall be located, when possible, so its axis is perpendicular to the concrete surface and not near formed joints or obvious edges of a unit of deposit.
 - d. The core specimens shall be taken, if possible, so no reinforcing steel is within the confines of the core.
 - e. The diameter of core specimens should be at least 3 times the maximum nominal size of the coarse aggregate used in the concrete but must be at least 2-inches in diameter.
 - f. The length of specimen, when capped, shall be at least twice the diameter of the specimen.
 - g. The core specimens shall be taken to the laboratory and when transported, shall not be thrown, dropped, allowed to roll, or damaged in any way.
 - h. Two (2) copies of test results shall be mailed directly to the Engineer. The concrete in question will be considered acceptable if the average compressive strength of a minimum of three test core specimens taken from a given area equal or exceed 85% of the specified 28-day strength and if the lowest core strength is greater than 75% of the specified 28-day strength.
- If the concrete placed by the Contractor is suspected of not having proper air content, the Contractor shall engage a materials testing consultant approved by the Engineer, to obtain and test samples for air content in accordance with ASTM C 457.

3.12 CARE AND REPAIR OF CONCRETE

- A. The Contractor shall protect all concrete against injury or damage from excessive heat, lack of moisture, overstress, or any other cause until final acceptance by the City. Care shall be taken to prevent the drying of concrete and to avoid roughening or otherwise damaging the surface. Care shall be exercised to avoid jarring forms or placing any strain on the ends of projecting reinforcing bars. Any concrete found to be damaged, or which may have been originally defective, or which becomes defective at any time prior to the final acceptance of the completed work, or which departs from the established line or grade, or which, for any other reason, does not conform to the requirements of the Contract Documents, shall be satisfactorily repaired or removed and replaced with acceptable concrete at no additional cost to the City.
- B. Areas of honeycomb shall be chipped back to sound concrete and repaired as directed.
- C. Concrete formwork blowouts or unacceptable deviations in tolerances for formed surfaces due to improperly constructed or misaligned formwork shall be repaired as directed. Bulging or protruding areas, which result from slipping or deflecting forms shall be ground flush or chipped out and redressed as directed.
- D. Areas of concrete in which cracking, spalling, or other signs of deterioration develop prior to final acceptance shall be removed and replaced or repaired as directed. This stipulation includes concrete that has experienced cracking due to drying or thermal shrinkage of the concrete. Structural cracks shall be repaired using an approved epoxy injection system. Non-structural cracks shall be repaired using an approved hydrophilic resin pressure injected grout system unless other means of repair are deemed necessary and approved. All repair work shall be performed at no additional cost to the City.
- E. Concrete which fails to meet the strength requirements as outlined in Article 3.11, Paragraph F, will be analyzed as to its adequacy based upon loading conditions, resultant stresses, and exposure conditions for the area of concrete in question. If the concrete in question is found unacceptable based upon this analysis, that portion of the structure shall be strengthened or replaced by the Contractor at no additional cost to the City. The method of strengthening or extent of replacement shall be as directed by the Engineer.

- END OF SECTION -

SECTION 03315 GROUT

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all materials for grout in accordance with the provisions of this Section and shall form, mix place, cure, repair, finish, and do all other Work as required to produce finished grout, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 01300 Submittals
- B. Section 03300 Cast in Place Concrete

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

- A. Specifications, codes, and standards shall be as specified in Section 03300 Cast in Place Concrete, and as referred to herein.
- B. Additional Commercial Standards
 - 1. CRD C 621Corps of Engineers Specification for Nonshrink Grout

1.04 SUBMITTALS

A. The Contractor shall submit certified test results verifying the compressive strength, shrinkage, and expansion requirements specified herein; and manufacturer's literature containing instructions and recommendations on the mixing, handling, placement and appropriate uses for each type of grout used in the work.

PART 2 - PRODUCTS

2.01 PREPACKAGED NON-SHRINK CEMENTITIOUS GROUT

- A. Nonshrink grout shall be a prepackaged, inorganic, non gas liberating, nonmetallic, cement based grout requiring only the addition of water. Manufacturer's instructions shall be printed on each bag or other container in which the materials are packaged. The specific formulation for each class of nonshrink grout specified herein shall be that recommended by the manufacturer for the particular application.
- B. Nonshrink grouts shall have a minimum 28 day compressive strength of 5000 psi (ASTM C109, restrained), shall have no shrinkage (0.0 percent) and a maximum 4.0 percent expansion in the plastic state when tested in accordance with ASTM C 827, and shall have no shrinkage (0.0 percent) and a maximum of 0.2 percent expansion in the hardened state when tested in accordance with CRD C 621.

- C. Cement based grout shall be Five Star Grout as manufactured by Five Star Products, Inc., Fairfield, Connecticut, or equal.
- D. Cementitious non-shrink grout shall be used at locations where there are no dynamic loads, the grout will not come in contact with wastewater or wastewater gases, and where non-shrink grout is identified on the Drawings. Applications include, but are not limited to, structural steel column base plates, gate frames and guides, and precast concrete to cast-in-place concrete joints.

2.02 PREPACKAGED NON-SHRINK EPOXY GROUT

- A. Epoxy-based non-shrink grout shall be a three component, 100 percent solids, solvent-free system designed for machinery grouting. Applications include, but are not limited to, anchoring, pump and motor bases, and any other equipment imparting dynamic loads to the support system.
- B. When non-shrink grout is identified on the Drawings in submerged (water or wastewater) or under wastewater gas environment, epoxy-based non-shrink grouts shall be used.
- C. The epoxy grout shall be delivered to site as prepackaged, three-component systems composing of the resin, hardener, and specially blended aggregates. The components shall be stored as recommended by the manufacturer until use.
- D. Non-shrink epoxy grout shall be Five Star DP Epoxy Grout by Five Star Products, Inc., Fairfield, Connecticut, or equal.

2.03 CEMENT GROUT

- A. Cement grout shall be composed of Portland cement and sand in the proportion specified in the Contract Documents and the minimum amount of water necessary to obtain the desired consistency. If no proportion is indicated, cement grout shall consist of one part Portland cement to three parts sand. Water amount shall be as required to achieve desired consistency without compromising strength requirements. White Portland cement shall be mixed with Portland cement as required to match color of adjacent concrete.
- B. The minimum compressive strength at 28 days shall be 4000 psi.
- C. For beds thicker than 1-1/2 inch and/or where free passage of grout will not be obstructed by coarse aggregate, 1-1/2 parts of coarse aggregate having a top size of 3/8 inch should be added. This stipulation does not apply for grout being swept in by a mechanism. These applications shall use a plain cement grout without coarse aggregate regardless of bed thickness.
- D. Sand shall conform to the requirements of ASTM C144.

2.04 DOWEL/ANCHOR BOLT ADHESIVE SYSTEM

A. When rebar or anchor bolts are specified to be drilled in and grouted on the Drawings, an adhesive system specified in Section 03200 - Concrete Reinforcement" shall be

used for dowels and an adhesive system specified in Section 05050 entitled "Metal Fastening" shall be used for anchor bolts.

2.05 CURING MATERIALS

A. Curing materials shall be as recommended by the manufacturer.

2.06 CONSISTENCY

A. The consistency of grouts shall be that necessary to completely fill the space to be grouted for the particular application. Dry pack consistency is such that the grout is plastic and moldable but will not flow. Where "dry pack" is called for in the Contract Documents, it shall mean a grout of the above described consistency; the type of grout to be used shall be as specified herein for the particular application.

2.07 MEASUREMENT OF INGREDIENTS

A. Prepackaged grouts shall have ingredients measured by means recommended by the manufacturer.

PART 3 - EXECUTION

3.01 GENERAL

- A. All curing, and protection of cement grout shall be as specified in Section 03370 Concrete Curing (Methods 1 and 2); or as recommended by manufacturer. The finish of the grout surface shall match that of the adjacent concrete.
- B. All mixing, surface preparation, handling, placing, consolidation, and other means of execution for prepackaged grouts shall be done according to the instructions and recommendations of the manufacturer.

3.02 CONSOLIDATION

A. Grout shall be placed in such a manner, for the consistency necessary for each application, so as to assure that the space to be grouted is completely filled.

- END OF SECTION -

GROUT CAM #25-0925 Exhibit 1D Page 1031 of 2050

SECTION 03350 CONCRETE FINISHES

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all materials, labor, and equipment required to provide finishes of all concrete surfaces specified herein and shown on the Drawings.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 03100 Concrete Formwork
- B. Section 03300 Cast-in-Place Concrete
- C. Section 03315 Grout

1.03 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

- A. Without limiting the generality of the other requirements of the specifications, all work herein shall conform to the applicable requirements of the following documents. All referenced specifications, codes, and standards refer to the most current issue available at the time of Bid.
 - 1. ACI 301 -Specifications for Structural Concrete for Buildings
 - 2. ACI 318 Building Code Requirements for Reinforced Concrete

1.04 SUBMITTALS

- A. Submit the following in accordance with Section 01300 Submittals.
 - 1. Manufacturer's literature on all products specified herein.

PART 2 – PRODUCTS

2.01 CONCRETE FLOOR SEALER

A. Floor sealer shall be Diamond Clear VOX or Super Diamond VOX by the Euclid Chemical Company, MasterKure CC 300 SB by BASF Master Builder Solutions.

2.02 CONCRETE LIQUID DENSIFIER AND SEALANT

A. Concrete liquid densifier and sealant shall be a high performance, deeply penetrating concrete densifier and sealant. Product shall be odorless, colorless, VOC-compliant, non-yellowing siliconate based solution designed to harden, dustproof and protect concrete floors subjected to heavy vehicular traffic and to resist black rubber tire marks on concrete surfaces. The product must contain a minimum solids content of 20% of which 50% is siliconate. Acceptable products are Diamond Hard by the Euclid Chemical

Company, Seal Hard by L&M Construction Chemicals and MasterKure HD 210 by BASF Master Builder Solutions.

2.03 NON-METALLIC FLOOR HARDENER

A. The specified non-metallic mineral aggregate hardener shall be formulated, processed, and packaged under stringent quality control at the manufacturer's owned and controlled factory. The hardener shall be a factory-blended mixture of specifically processed graded mineral aggregate, selected Portland cement, and necessary plasticizing agents. Acceptable products shall be "Surflex" by the Euclid Chemical Company, "Harcol" by Sonneborn, "Maximent" by BASF, and "Mastercon" by BASF.

2.04 NON-OXIDIZING HEAVY DUTY METALLIC FLOOR HARDENER

A. Non-oxidizing heavy duty metallic floor hardener shall be formulated, processed, and packaged under stringent quality control at the manufacturer's owned and controlled factory. The hardener shall be a mixture of specifically processed non-rusting aggregate, selected Portland cement, and necessary plasticizing agents. Product shall be "Diamond-Plate" by the Euclid Chemical Company, or Masterplate by BASF Construction Chemicals.

2.05 NON-SLIP FLOORING ADDITIVE

A. Non-slip flooring additives for slip resistant floors shall be non-metallic. Non-slip flooring additives shall be Frictex NS by BASF Construction Chemicals, A-H Alox by Anti-Hydro, or Euco Grip by the Euclid Chemical Company.

PART 3 - EXECUTION

3.01 FINISHES ON FORMED CONCRETE SURFACES

- A. After removal of forms, the finishes described below shall be applied in accordance with Article 3.05 of this Section entitled "Concrete Finish Schedule". Unless the finish schedule specifies otherwise, all surfaces shall receive at least a Type I finish. The Engineer shall be the sole judge of acceptability of all concrete finish work.
 - 1. Type I Rough: All fins, burrs, offsets, marks and all other projections left by the forms shall be removed. Projections, depressions, etc. below finished grade required to be removed will only be those greater than ¼-inch. All holes left by removal of ends of ties, and all other holes, depressions, bugholes, air/blow holes or voids shall be filled solid with cement grout after first being thoroughly wetted and then struck off flush. The only holes below grade to be filled will be tie holes and any other holes larger than ¼-inch in any dimension. Honeycombs shall be chipped back to solid concrete and repaired as directed by the Engineer. All holes shall be filled with tools, such as sponge floats and trowels, that will permit packing the hole solidly with cement grout. Cement grout shall consist of one part cement to three parts sand, epoxy bonding agent (for tie holes only) and the amount of mixing water shall be as little as consistent with the requirements of handling and placing. Color of cement grout shall match the adjacent wall surface.

- 2. <u>Type II Grout Cleaned</u>: Where this finish is required, it shall be applied after completion of Type I finish. After the concrete has been predampened, a slurry consisting of one part cement (including an appropriate quantity of white cement in order to produce a color matching the surrounding concrete) and 1-1/2 parts sand passing the No. 16 sieve, by damp loose volume, shall be spread over the surface with clean burlap pads or sponge rubber floats. Mix proportions shall be submitted to the Engineer after a sample of the work is established and accepted. Any surplus shall be removed by scraping and then rubbing with clean burlap. The finish shall be kept damp for at least 36 hours after application.
- 3. Type III Smooth Rubbed: Where this finish is required, it shall be applied after the completion of the Type II finish. No rubbing shall be done before the concrete is thoroughly hardened and the mortar used for patching is firmly set. A smooth, uniform surface shall be obtained by wetting the surface and rubbing it with a carborundum stone to eliminate irregularities. Unless the nature of the irregularities require it, the general surface of the concrete shall not be cut into. Corners and edges shall be slightly rounded by the use of the carborundum stone. Brush finishing or painting with grout or neat cement will not be permitted. A 100 square foot example shall be established at the beginning of the project to establish acceptability.

3.02 SLAB AND FLOOR FINISHES

- A. The finishes described below shall be applied to floors, slabs, flow channels and top of walls in accordance with Article 3.05 of this Section entitled "Concrete Finish Schedule". The Engineer shall be the sole judge of acceptability of all such finish work.
 - 1. <u>Type "A" Screeded</u>: This finish shall be obtained by placing screeds at frequent intervals and striking off to the surface elevation required. When a Type "F" finish is subsequently to be applied, the surface of the screeded concrete shall be roughened with a concrete rake to 1/2-inch minimum deep grooves prior to final set.
 - 2. Type "B" Wood Floated: This finish shall be obtained after completion of a Type "A" finish by working a previously screeded surface with a wood float until the desired texture is reached. Floating shall begin when the water sheen has disappeared and when the concrete has sufficiently hardened so that a person's foot leaves only a slight imprint. If wet spots occur, water shall be removed with a squeegee. Care shall be taken to prevent the formation of laitance and excess water on the finished surface. All edges shall be edged with an 1/8-inch tool as directed by the Engineer. The finished surface shall be true, even, and free from blemishes and other irregularities.
 - 3. <u>Type "C" Cork Floated</u>: This finish shall be similar to Type "B" but slightly smoother than that obtained with a wood float. It shall be obtained by power or band floating with cork floats.
 - 4. Type "D" Steel Troweled: This finish shall be obtained after completion of a Type "B" finish. When the concrete has hardened sufficiently to prevent excess fine material from working to the surface, the surface shall be compacted and smoothed with not less than two thorough and complete steel troweling operations. In areas which are to receive a floor covering such as tile, resilient flooring, or carpeting, the applicable Specification Sections and Contract Drawings shall be reviewed for the required finishes and degree of flatness. In areas that are intermittently wet such as pump

rooms, only one troweling operation is required to provide some trowel marks for slip resistance. All edges shall be edged with an 1/8-inch tool as directed by the Engineer. The finish shall be brought to a smooth, dense surface, free from defects and blemishes.

- 5. <u>Type "E" Broom or Belt</u>: This finish shall provide the surface with a transverse scored texture by drawing a broom or burlap belt across the surface immediately after completion of a Type "B" finish. All edges shall be edged with an 1/8-inch tool as directed by the Engineer.
- 6. Type "F" Swept in Grout Topping: This finish shall be applied after a completion of a Type "A" finish. The concrete surface shall be properly cleaned, washed, and coated with a mixture of water and Portland Cement. Cement grout in accordance with Section 03315 shall then be plowed and swept into neat conformance with the blades or arms of the apparatus by turning or rotating the previously positioned mechanical equipment. Special attention shall be paid to true grades, shapes and tolerances as specified by the manufacturer of the equipment. Before beginning this finish, the Contractor shall notify the Engineer and the equipment manufacturer of the details of the operation and obtain approval and recommendations of the equipment manufacturer.
- 7. Type "G" Hardened Finish: This finish shall be applied after completion of a Type "B" or Type "C" finish and prior to application of a Type "D" finish. Hardeners shall be applied in strict accordance with the manufacturer's requirements. Hardeners shall be applied using a mechanical spreader. The hardener shall be applied in two shakes with the first shake comprising of 2/3 of the total amount. Type "D" finish shall be applied following completion of application of hardener.
 - a. Non-metallic floor hardener shall be applied where specifically required on the Contract Drawings at the rate of 1.0 pounds/ft2.
 - b. Non-oxidizing heavy duty metallic floor hardener shall be applied at the loading docks and where specifically required on the Contract Drawings or specified herein at the rate of 1.5 pounds/ft2.
- 8. <u>Type "H" Non-Slip Finish</u>: This finish shall be provided by applying a non-slip flooring additive concurrently with the application of a Type "D" finish and/or installation of floor sealants. Application procedure shall be in accordance with manufacturer's instructions. Finish shall be applied where specifically required on the Contract Drawings or specified herein.
- 9. <u>Type "J" Raked Finish</u>: This finish shall be provided by raking the surface as soon as the condition of the concrete permits by making depressions of +/-1/4 inch.

3.03 CONCRETE SEALERS

- A. Concrete sealers shall be applied where specifically required on the Contract Drawings or specified herein.
- B. Sealers shall be applied after installation of all equipment, piping, etc. and after completion of any other related construction activities. Application of sealers shall be in strict accordance with manufacturer's requirements.

- C. Sealers shall be applied to all floor slabs not painted and not intended to be immersed.
- D. Floor slabs subjected to vehicular traffic shall be sealed with the concrete liquid densifier and sealer.
- E. All other floor slabs to receive sealer shall be sealed with concrete floor sealer.

3.04 FINISHES ON EQUIPMENT PADS

- A. Formed surfaces of equipment pads shall receive a Type III finish.
- B. Top surfaces of equipment pads, except those surfaces subsequently required to receive non-shrink grout and support equipment bases, shall receive a Type "D" finish, unless otherwise noted. Surfaces which will later receive grout shall, before the concrete takes its final set, be made rough by removing the sand and cement that accumulates on the top to the extent that the aggregate will be exposed with irregular indentations in the surface up to 1/2 inch deep.

3.05 CONCRETE FINISH SCHEDULE

Item	Type of Finish
Concrete surfaces indicated to receive textured coating	1
Inner face of walls of tanks, flow channels, wet wells, perimeter walls, and miscellaneous concrete structures:	
From 3 feet below water surface to bottom of wall	 *
From top of wall to 3 feet below water surface	II*
Exterior concrete walls below grade	1
Exterior exposed concrete walls, ceilings, beams, manholes, hand holes, miscellaneous structures and columns (including top of wall) to one foot below grade. All other exposed concrete surfaces not specified elsewhere	II
All interior exposed concrete vertical surfaces in buildings	III
Interior exposed ceiling, including beams	III
Floors of process equipment tanks or basins, and slabs to receive roofing material or waterproof membranes	В
All interior finish floors of buildings and structures and walking surfaces which will be continuously or intermittently wet	D
All interior finish floors of buildings and structures which are not continuously or intermittently wet	D
Floors to receive tile, resilient flooring, or carpeting	D

Item	Type of Finish
Concrete in flow channels	D
Exterior concrete sidewalks, steps, ramps, decks, slabs on grade and landings exposed to weather	E
Floors of process equipment tanks indicated on Drawings to receive grout topping	F
Garage and storage area floors	G
Precast concrete form panels, hollow core planks, double tees	J

^{*} Finish shall be acceptable to the coating applicator and manufacturer.

- END OF SECTION -

SECTION 03370 CONCRETE CURING

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall protect all freshly deposited concrete from premature drying and excessively hot or cold temperatures, and maintain with minimal moisture loss at a relatively constant temperature for the period of time necessary for the hydration of the cement and proper hardening of the concrete in accordance with requirements specified herein.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 03100 Concrete Framework
- B. Section 03300 Cast-in-Place Concrete
- C. Section 03315 Grout
- D. Section 03350 Concrete Finishes

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the Section entitled "Submittals", the contractor shall submit the following:
 - 1. Proposed procedures for protection of concrete under wet weather placement conditions.
 - 2. Proposed normal procedures for protection and curing of concrete.
 - 3. Proposed special procedures for protection and curing of concrete under hot and cold weather conditions.
 - 4. Proposed method of measuring concrete surface temperature changes.
 - 5. Manufacturer's literature and material certification for proposed curing compounds.

1.04 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

- A. Without limiting the generality of other requirements of these specifications all work hereunder shall conform to the applicable requirements of the referenced portions of the following documents, to the extent that the requirements therein are not in conflict with the provisions of this Section.
 - 1. ACI 301 Specifications for Structural Concrete for buildings
 - 2. ACI 304 Guide for Measuring, Mixing, Transporting, and Placing Concrete

1

3. ACI 305 Hot Weather Concreting

- 4. ACI 306 Cold Weather Concreting
- 5. ACI 308 Standard Practice for Curing Concrete
- 6. ASTM C171 Specifications for Sheet Materials for Curing Concrete
- 7. ASTM C309 Specification for Liquid Membrane Forming Compounds for Curing Concrete
- 8. ASTM C1315 Standard Specification for Liquid Membrane-Forming Compounds Having Special Properties for Curing and Sealing Concrete

1.05 QUALITY ASSURANCE

- A. Curing compound shall not be used on any surface where concrete, coatings, or other material will be bonded unless the manufacturer certifies that the curing compound will not prevent bond or indicates measures to be taken to completely remove the curing compound from areas to receive bonded applications, and specifically approved by the Engineer.
- B. Care shall be taken to ensure that curing compounds are compatible with all finish concrete castings.
- C. Curing compounds shall not be used on surfaces exposed to water in potable water storage tanks and treatment plants unless curing compound is certified in accordance with ANSI/NSF Standard 61.

PART 2 - PRODUCTS

2.01 LIQUID MEMBRANE-FORMING CURING COMPOUND

- A. Clear curing and sealing compound shall be a clear styrene acrylate type complying with ASTM C 1315, Type 1, Class A with a minimum solids content of 30%. Moisture loss shall not be greater than 0.40 kg/m2 when applied at 300 sq.ft./gal. Manufacturer's certification is required. Acceptable products are Super Diamond Clear VOX by the Euclid Chemical Company, MasteKure CC 300 SB by BASF Master Builder Solutions, and Cure & Seal 30 Plus by Symons Corporation.
- B. Where specifically approved by Engineer, on slabs to receive subsequent applied finishes, compound shall conform to ASTM C 309. Acceptable products are "Kurez DR VOX" or "Kurez W VOX" by the Euclid Chemical Company. Install in strict accordance with manufacturer's requirements.

2.02 EVAPORATION REDUCER

A. Evaporation reducer shall be BASF, "MasterKure ER 50", or Euclid Chemical "Euco-Bar".

2.03 BURLAP MATS

A. Burlap mats shall conform to AASHTO M-182.

PART 3 - EXECUTION

3.01 PROTECTION AND CURING

- A. All freshly placed concrete work shall be protected from the elements, flowing water and from defacement of any nature during construction operations.
- B. As soon as the concrete has been placed and horizontal top surfaces have received their required finish, provision shall be made for maintaining the concrete in a moist condition for at least a 7-day period thereafter except for high early strength concrete, for which the period shall be at least the first three days after placement. Horizontal surfaces shall be kept covered, and intermittent, localized drying will not be permitted.
- C. Walls that will be exposed on one side with either fluid or earth backfill on the opposite side shall be continuously wet cured for a minimum of five days. Use of a curing compound will not be acceptable for applications of this type.
- D. After placing and finishing, use one or more of the following methods to preserve moisture in concrete:
 - 1. Ponding or continuous fogging or sprinkling.
 - 2. Application of mats or fabric kept continuously wet.
 - 3. Continuous application of steam (under 150 degrees Fahrenheit).
 - 4. Application of sheet materials conforming to ASTM C171.
 - 5. If approved by the Engineer, application of a curing compound in accordance with Article 3.05. Apply the compound in accordance with the manufacturer's recommendation on after water sheen has disappeared from the concrete surface and after finishing operations. The rate of application shall not exceed 200 square feet per gallon. For rough surfaces, apply in two directions at right angles to each other.
- E. Keep absorbent forms wet until they are removed. After form removal, cure concrete by one of the methods in paragraph D.
- F. Any of the curing procedures used in Paragraph 3.01-D may be replaced by one of the other curing procedures listed in Paragraph 3.01-D after the concrete is one-day old. However, the concrete surface shall not be permitted to become dry at any time.

3.02 CURING CONCRETE UNDER COLD WEATHER CONDITIONS

- A. Suitable means shall be provided for a minimum of 72 hours after placing concrete to maintain it at or above the minimum as placed temperatures specified in Article 3.02 herein.. During the 72-hour period, the concrete surface shall not be exposed to air more than 20°F above the minimum as placed temperatures.
- B. Stripping time for forms and supports shall be increased as necessary to allow for retardation in concrete strength caused by colder temperatures. This retardation is magnified when using concrete made with blended cements or containing fly ash or

- ground granulated blast furnace slag. Therefore, curing times and stripping times shall be further increased as necessary when using these types of concrete.
- C. The methods of protecting the concrete shall be approved by the Engineer and shall be such as will prevent local drying. Equipment and materials approved for this purpose shall be on the site in sufficient quantity before the work begins. The Contractor shall assist the Engineer by providing holes in the forms and the concrete in which thermometers can be placed to determine the adequacy of heating and protection. All such thermometers shall be furnished by the Contractor in quantity and type which the Engineer directs.
- D. Curing procedures during cold weather conditions shall conform to the requirements of ACI 306.

3.03 CURING CONCRETE UNDER HOT WEATHER CONDITIONS

- A. When air temperatures exceed 85°F, the Contractor shall take extra care in placing and finishing techniques to avoid formation of cold joints and plastic shrinkage cracking. If ordered by the Engineer, temporary sun shades and/or windbreakers shall be erected to guard against such developments, including generous use of wet burlap coverings and fog sprays to prevent drying out of the exposed concrete surfaces.
- B. Immediately after screeding, horizontal surfaces shall receive an application of evaporation reducer. Apply in accordance with manufacturer's instructions. Final finish work shall begin as soon as the mix has stiffened sufficiently to support the workmen.
- C. Curing and protection of the concrete shall begin immediately after completion of the finishing operation. Continuous moist-curing consisting of method 1 or 2 listed in paragraph 3.01D is mandatory for at least the first 24 hours. Method 2 may be used only if the finished surface is not marred or blemished during contact with the coverings.
- D. At the end of the initial 24-hour period, curing and protection of the concrete shall continue for at least four (4) additional days using one of the methods listed in paragraph 3.01D.
- E. Curing procedures during hot weather conditions shall conform to the requirements of ACI 305.

3.04 USE OF CURING COMPOUND

- A. Curing compound shall be used only where specifically approved by the Engineer. Curing compound shall not be used on surfaces to receive subsequent coatings. Curing compound shall never be used for curing exposed walls with fluid or earth backfill on the opposite side. A continuous wet cure for a minimum of five days is required for these applications. Curing compound shall not be used on surfaces exposed to water in potable water storage tanks and treatment plants unless curing compound is certified in accordance with ANSI/NSF Standard 61.
- B. When permitted, the curing compound shall maintain the concrete in a moist condition for the required time period, and the subsequent appearance of the concrete surface shall not be affected.

C. The compound shall be applied in accordance with the manufacturer's recommendations after water sheen has disappeared from the concrete surface and after finishing operations. The rate of application shall not exceed 300 square feet per gallon. For rough surfaces, apply in two directions at right angles to each other.

3.05 EARLY TERMINATION OF CURING

- A. Moisture retention measures may be terminated earlier than the specified times only when at least one of the following conditions is met:
 - 1. The strength of the concrete reaches 85 percent of the specified 28-day compressive strength in laboratory-cured cylinders representative of the concrete in place, and the temperature of the in-place concrete has been constantly maintained at 50 degrees Fahrenheit or higher.
 - 2. The strength of concrete reaches the specified 28-day compressive strength as determined by accepted nondestructive methods or laboratory-cured cylinder test results.

- END OF SECTION -

SECTION 03400 PRECAST CONCRETE - GENERAL

PART 1 – GENERAL

1.01 REQUIREMENTS

A. The Contractor shall construct all precast concrete items as required in the Contract Documents, including all appurtenances necessary to make a complete installation.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 03200 Concrete Reinforcement
- B. Section 03300 Cast-in-Place Concrete
- C. Section 03350 Concrete Finishes
- D. Section 03370 Concrete Curing
- E. Section 03315 Grout
- F. Section 05500 Metal Fabrications

1.03 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

- A. Without limiting the generality of other requirements of these Specifications, all work specified herein shall conform to the applicable requirements of the following documents. All referenced specifications, codes, and standards refer to the most current issue available at the end of the Bid.
 - 1. Florida Building Code
 - 2. ACI 318-Building Code Requirements for Reinforced Concrete
 - 3. PCI Standard MNL-116 Manual for Quality Control for Plants and Production of Precast and Prestressed Concrete Products
 - 4. PCI Design Handbook
 - 5. Section 02535 Structures

1.04 SUBMITTALS

- A. The Contractor shall submit the following for review in accordance with Section 01300 Submittals. Refer to Section 02535 Structures.
 - 1. Shop drawings for all precast concrete items showing all dimensions, locations, and type of lifting inserts, and details of reinforcement and joints.
 - 2. A list of the design criteria used by the manufacturer for all manufactured, precast items.

Page 1043 of 2050

- 3. Design calculations, showing at least the design loads and stresses on the item, shall be submitted. Calculations shall be signed and sealed by a Professional Engineer registered in the State of Florida.
- 4. Certified reports for all lifting inserts, indicating allowable design loads.
- 5. Information on lifting and erection procedures.

1.05 QUALITY ASSURANCE

A. All manufactured precast concrete units shall be produced by an experienced manufacturer regularly engaged in the production of such items. All manufactured precast concrete and site-cast units shall be free of defects, checks, and cracks. Care shall be taken in the mixing of materials, casting, curing and shipping to avoid any of the above. The Engineer may elect to examine the units at the casting yard or upon arrival of the same at the site. The Engineer shall have the option of rejecting any or all of the precast work if it does not meet with the requirements specified herein or on the Drawings. All rejected work shall be replaced at no additional cost to the City.

B. Manufacturer qualifications:

- The precast concrete manufacturing plant shall be certified by the Prestressed Concrete Institute, Plant Certification Program, prior to the start of production. Certification is only required for plants providing prestressed structural members such as hollow core planks, double T members, etc.
- 2. In lieu of such certification, the manufacturer shall, at his expense, meet the following requirements:
 - a. Retain independent testing or consulting firm approved by the Architect/Engineer and/or City.
 - b. The basis of inspection shall be the Prestressed Concrete Institute Manual for Quality Control for Plants and Production of Precast and Prestressed Concrete Products. MNL-116.
 - c. This firm shall inspect the precast plant at two-week intervals during production and issue a report, certified by a registered engineer verifying that materials, methods, products and quality control meet all the requirements of the specifications, drawings, and MNL-116. If the report indicates to the contrary, the engineer, at the precaster's expense, will inspect and may reject any or all products produced during the period of non-compliance with the above requirements.
- C. Plant production and engineering must be under direct supervision and control of an Engineer who possesses a minimum of five (5) years' experience in precast concrete work.

PART 2 - PRODUCTS

2.01 CONCRETE

- A. Concrete materials including Portland cement, aggregates, water, and admixtures shall conform to Section 03300 Cast-in-Place Concrete.
- B. For prestressed concrete items, minimum compressive strength of concrete at 28 days shall be 5,000 psi unless otherwise specified. Minimum compressive strength of concrete at transfer of prestressing force shall be 3,500 psi.
- C. For non-prestressed concrete items, minimum compressive strength of concrete at 28 days shall be 4,000 psi unless otherwise specified.

2.02 **GROUT**

- A. Grout for joints between panels shall be a non-shrink, non-metallic grout in conformance with Section 03315 Grout.
- B. Minimum compressive strength of grout at 7 days shall be 3,000 psi.

2.03 REINFORCING STEEL

A. Reinforcing steel used for precast concrete construction shall conform to Section 03200 -Concrete Reinforcement.

2.04 PRESTRESSING STRANDS

A. Prestressing strands shall be 7-wire, stress-relieved, high-strength strands Grade 250K or 270K.

2.05 STEEL INSERTS

- A. Steel inserts shall be in accordance with Section 05500 Metal Fabrications.
- B. All steel inserts protruding from or occurring at the surface of precast units shall be galvanized in accordance with Section 05035 Galvanizing.

2.06 WELDING

A. Welding shall conform to Section 05500 - Metal Fabrications.

2.07 BEARING PADS

A. Plastic bearing pads shall be multi-monomer plastic strips which are non-leaching and support construction loads with no visible overall expansion, manufactured specifically for the purpose of bearing precast concrete.

PART 3 - EXECUTION

3.01 FABRICATION AND CASTING

- A. All precast members shall be fabricated and cast to the shapes, dimensions and lengths shown on the Drawings and in compliance with PCI MNL-116. Precast members shall be straight, true and free from dimensional distortions, except for camber and tolerances permitted later in this clause. All integral appurtenances, reinforcing, openings, etc., shall be accurately located and secured in position with the form work system. Form materials shall be steel and the systems free form leakage during the casting operation.
- B. All cover of reinforcing shall be the same as detailed on the Drawings.
- C. Because of the critical nature of the bond development length in prestressed concrete panel construction, if the transfer of stress is by burning of the fully tensioned strands at the ends of the member, each strand shall first be burned at the ends of the bed and then at each end of each member before proceeding to the next strand in the burning pattern.
- D. The Contractor shall coordinate the communication of all necessary information concerning openings, sleeves, or inserts to the manufacturer of the precast members.
- E. Concrete shall be finished in accordance with Section 03350 Concrete Finishes. All recesses due to cut tendons shall be grouted.
- F. Curing of precast members shall be in accordance with Section 03370 Concrete Curing.
- G. The manufacturer shall provide lifting inserts.

3.02 HANDLING, TRANSPORTING AND STORING

- A. Precast members shall not be transported away from the casting yard until the concrete has reached the minimum required 28 day compressive strength and a period of at least five (5) days has elapsed since casting, unless otherwise permitted by the Engineer.
- B. No precast member shall be transported from the plant to the job site prior to approval of that member by the plant inspector. This approval will be stamped on the member by the plant inspector.
- C. During handling, transporting, and storing, precast concrete members shall be lifted and supported only at the lifting or supporting points as indicated on the shop drawings.
- D. All precast members shall be stored on solid, unyielding, storage blocks in a manner to prevent torsion, objectionable bending, and contact with the ground.
- E. Precast concrete members shall not be used as storage areas for other materials or equipment.
- F. Precast members damaged while being handled or transported will be rejected or shall be repaired in a manner approved by the Engineer.

3.03 ERECTION

- A. Erection shall be carried out by the manufacturer or under his supervision using labor, equipment, tools and materials required for proper execution of the work.
- B. Contractor shall prepare all bearing surfaces to a true and level line prior to erection. All supports of the precast members shall be accurately located and of required size and bearing materials.
- C. Installation of the precast members shall be made by leveling the top surface of the assembled units keeping the units tight and at right angles to the bearing surface.
- D. Connections which require welding shall be properly made in accordance with Section 05050 Metal Fastening.
- E. Grouting between adjacent precast members and along the edges of the assembled precast members shall be accomplished as indicated on the drawings, care being taken to solidly pack such spaces and to prevent leakage or droppings of grout through the assembled precast members. Any grout which seeps through the precast members shall be removed before it hardens.
- F. In no case shall concentrated construction loads, or construction loads exceeding the design loads, be placed on the precast members. In no case shall loads be placed on the precast members prior to the welding operations associated with erection, and prior to placing of topping (if required).
- G. No Contractor, Subcontractor or any of his employees shall arbitrarily cut, drill, punch or otherwise tamper with the precast members.
- H. Precast members damaged while being erected will be rejected or shall be repaired in a manner approved by the Engineer.

- END OF SECTION -

SECTION 03480 PRECAST CONCRETE MANHOLES, HANDHOLES, AND VAULTS

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall construct all precast concrete items as required in the Contract Documents, including all appurtenances necessary to make a complete installation.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 03400 – Precast Concrete, General

1.03 QUALITY CONTROL

- A. Without limiting the generality of other requirements of these specifications, all work specified herein shall conform to or exceed the requirements of the Florida Building Code (FBC) and the applicable requirements of the following documents to the extent that the provisions of such documents are not in conflict with the requirements of this section:
 - 1. ASTM C478 Specification for Precast Reinforced Concrete Manhole Sections.
 - 2. ACI 318 Building Code Requirements for Reinforced Concrete.

1.04 SUBMITTALS

- A. The Contractor shall submit shop drawings in accordance with Specification Section 01300 Submittals.
- B. In addition to the items listed in Section 03400 Precast Concrete, General, Shop Drawings shall include, but not be limited to:
 - 1. Piping and conduit sheets
 - 2. Complete layout and installation Drawings and schedules with clearly marked dimensions.

PART 2 - PRODUCTS

2.01 PRECAST CONCRETE MANHOLES, VAULTS, AND METER BOXES

- A. Precast concrete manholes, vaults, and meter boxes shall conform to ASTM C478 except as modified herein, and shall be furnished with waterstops, sleeves and openings as noted on the Drawings. Reinforcement, if shown, shall be as shown on the Drawings. Tapered top sections shall be supplied where they are shown on the drawings, or where they are otherwise indicated to be necessary.
 - 1. The design and manufacture of the sections shall be based on H-20 traffic loading.
 - 2. Reinforcement shall conform to the requirements of the Section 03200 entitled "Concrete Reinforcement".

- 3. Minimum wall thickness shall be eight inches.
- 4. Cement shall be ASTM C150, Type II.
- 5. The date and name of manufacturer shall be marked inside each precast section.
- 6. Joints between manhole riser sections and at base slabs shall be groove type. Joints shall be sealed with two (2) individual self-sealing butyl rubber gaskets conforming to Federal Specification No. SS-5-00210. The gasket material shall be Kent Seal.

2.02 PIPE CONNECTIONS

- A. The precast reinforced concrete manhole base shall be provided with circular openings at the locations and elevations for the proper connection of all pipes. The pipe connections shall be sealed with either a flexible manhole seal assembly or with mortar.
- B. When a flexible manhole seal assembly is used to seal the pipe connection, the seal assembly shall be installed in accordance with the recommendations of the seal assembly manufacturer and shall conform to ASTM C923.
- C. Flexible manhole seal assemblies shall permit at least an eight (8) degree deflection from the center line of the opening in any direction while maintaining a watertight connection.
- D. The flexible manhole seal assembly shall be manufactured by Interpace Corp (Lock Joint Flexible Manhole Sleeve), National Pollution Control Systems, Inc. (Kor-N-Seal) or Press-Seal Gasket Corp. Manhole seal assemblies produced by other manufacturers will be considered for use by Engineer if submitted by the Contractor. Such manhole seal assemblies shall be acceptable only if the Shop Drawings are approved.
- E. Short lengths of sewer pipe shall be installed entering and leaving the precast manhole base. These short lengths of pipe shall have a maximum length of 3'3". A concrete cradle shall be placed under the short length of pipe in accordance with the dimensions shown on the Drawings.
- F. The concrete cradle is not necessary when a flexible manhole seal assembly is used.

2.03 MANHOLE LADDERS

A. Manhole ladders shall conform to Section 05515 – Ladders.

2.04 SITE-CAST ITEMS

A. Where removable concrete slabs are required by the drawings, they shall conform to the requirements set forth in Section 03300 entitled "Cast-in-Place Concrete." All thicknesses, reinforcing, and edge clearances shall be as shown on the drawings.

2.05 MORTAR

A. Mortar used between the sections of precast concrete manholes and vaults shall be as recommended by the section manufacturer, subject to the requirements of Division 4.

2.06 NON-SHRINK GROUT

A. Non-shrink grout shall be as specified in Section 03315 entitled "Grout".

PART 3 - EXECUTION

3.01 MANUFACTURED ITEMS

A. Precast Concrete Manhole Sections

1. Precast concrete manhole sections shall be set so as to be vertical, with sections in true alignment. The joint of the previously set section shall be covered with mortar and preformed joint sealant before the next section is placed. Before the mortar is set, joints shall be pointed, and exterior joints shall be thoroughly tooled so as to be slightly concave with a hard polished surface, free of cracks. Interior joints shall be tooled flush in a similar manner.

B. Miscellaneous Precast Vaults

1. All pull boxes, electrical manholes, vaults, meterboxes and other miscellaneous precast concrete boxes shall be installed in accordance with the manufacturer's recommendations, unless otherwise required by the drawings.

3.02 SITE CAST ITEMS

- A. Where removable concrete slabs are required by the drawings, they shall be fabricated in accordance with Section 03300 entitled "Cast-in-Place Concrete".
- B. Sealant, as specified in the Section 07920 entitled "Sealants and Caulking" shall be provided all around the panels.

- END OF SECTION -

Page 1050 of 2050

SECTION 05010 METAL MATERIALS

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. Metal materials not otherwise specified shall conform to the requirements of this Section.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Materials for fasteners are included in Section 05050 entitled "Metal Fastening".
- B. Requirements for specific products made from the materials specified herein are included in other sections of the Specifications. See the section for the specific item in question.

1.03 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

- A. ASTM A36 Standard Specification for Structural Steel
- B. ASTM A47 Standard Specification for Malleable Iron Castings
- C. ASTM A48 Standard Specification for Gray Iron Castings
- D. ASTM A53 Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated Welded and Seamless
- E. ASTM A167 Standard Specification for Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and Strip
- F. ASTM A276 Standard Specification for Stainless and Heat-Resisting Steel Bars and Shapes
- G. ASTM A307 Standard Specification for Carbon Steel Externally Threaded Standard Fasteners
- H. ASTM A446 Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) by the Hot-Dip Process, Structural (Physical) quality
- I. ASTM A500 Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes
- J. ASTM A501 Standard Specification for Hot-Formed Welded and Seamless Carbon Steel Structural Tubing
- K. ASTM A529 Standard Specification for Structural Steel with 42 000 psi (290 Mpa) Minimum Yield Point (1/2 in. (12.7 mm) Maximum Thickness)
- L. ASTM A536 Standard Specification for Ductile Iron Castings
- M. ASTM A570 Standard Specification for Hot-Rolled Carbon Steel Sheet and Strip, Structural Quality

- N. ASTM A572 Standard Specification for High Strength Low-Alloy Columbium- Vanadium Structural Steel Grade 50
- O. ASTM A666 Standard Specification for Austenitic Stainless Steel, Sheet, Strip, Plate, and Flat Bar for Structural Applications
- P. ASTM A992 Standard Specification for Structural Steel Shapes
- Q. ASTM A1085 Standard Specification for Cold-Formed Welded Carbon Steel Hollow Structural Sections (HSS)
- R. ASTM B26 Standard Specification for Aluminum-Alloy Sand Castings
- S. ASTM B85 Standard Specification for Aluminum-Alloy Die Castings
- T. ASTM B108 Standard Specification for Aluminum-Alloy Permanent Mold Castings
- U. ASTM B138 Standard Specification for Manganese Bronze Rod, Bar, and Shapes
- V. ASTM B209 Standard Specification for Aluminum-Alloy Sheet and Plate
- W. ASTM B221 Standard Specification for Aluminum-Alloy Extruded Bars, Rods, Wire, Shapes, and Tubes
- X. ASTM B308 Standard Specification for Aluminum-Alloy Standard Structural Shapes, Rolled or Extruded
- Y. ASTM B574 Standard Specification for Nickel-Molybdenum-Chromium Alloy Rod
- Z. ASTM F468 Standard Specification for Nonferrous Bolts, Hex Cap Screws, and Studs for General Use
- AA.ASTM F593 Standard Specification for Stainless Steel Fasteners

1.04 SUBMITTALS

A. Material certifications shall be submitted along with any shop drawings for metal products and fabrications required by other sections of the Specifications.

1.05 QUALITY ASSURANCE

A. City may engage the services of a testing agency to test any metal materials for conformance with the material requirements herein. If the material is found to be in conformance with Specifications the cost of testing will be borne by the City. If the material does not conform to the Specifications, the cost of testing shall be paid by the Contractor and all materials not in conformance as determined by the Engineer shall be replaced by the Contractor at no additional cost to the City. In lieu of replacing materials the Contractor may request further testing to determine conformance, but any such testing shall be paid for by the Contractor regardless of outcome of such testing.

PART 2 - PRODUCTS

2.01 CARBON AND LOW ALLOY STEEL

A.	Ma	terial types and ASTM designations shall be as listed below:
	1.	Steel W Shapes
	2.	Steel S, M, C, MC Shapes and Angles, Bars, and PlatesASTM A 36
	3.	Steel HP Shapes
	4.	Rods
	5.	Pipe – Structural UseASTM A53 Grade B
	6.	Hollow Structural Sections ASTM A500 Grade C or A1085
	7.	Cold-Formed Steel Framing
2.02	STA	AINLESS STEEL
A.	All	stainless steel fabrications shall be Type 316.
В.	Ma	terial types and ASTM designations are listed below:
	1.	Plates and Sheets
	2.	Structural ShapesASTM A276
	3.	Fasteners (Bolts, etc.)
2.03	ALI	JMINUM
A.	. All aluminum shall be alloy 6061-T6, unless otherwise noted or specified herein.	
B.	Ma	terial types and ASTM designations are listed below:
	1.	Structural ShapesASTM B308
	2.	Castings
	3.	Extruded Bars
	4.	Extruded Rods, Shapes and Tubes ASTM B221 - Alloy 6063
	5.	Plates
	6.	Sheets
C.		aluminum structural members shall conform to the requirements of Section 05140 titled "Structural Aluminum".

- D. All aluminum shall be provided with mill finish unless otherwise noted.
- E. Where bolted connections are indicated, aluminum shall be fastened with Type 316 stainless steel bolts.
- F. Aluminum in contact with dissimilar materials shall be insulated with an approved dielectric.

2.04 CAST IRON

A. Material types and ASTM designations are listed below:

- 1. GrayASTM A48 Class 30B
- 2. Malleable ASTM A47

2.05 BRONZE

- A. Material types and ASTM designations are listed below:
 - 1. Rods, Bars and Sheets ASTM B138 Alloy B Soft

2.06 HASTELLOY

A. All Hastelloy shall be Alloy C-276.

PART 3 - EXECUTION

(NOT USED)

- END OF SECTION -

05010 4

METAL MATERIALS AM #25-0925 Exhibit 1D Page 1054 of 2050

SECTION 05035 GALVANIZING

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. Where galvanizing is called for in the Contract Documents, the galvanizing shall be performed in accordance with the provisions of this Section unless otherwise noted.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Further requirements for galvanizing specific items may be included in other Sections of the Specifications. See section for the specific item in question.

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

- A. Without limiting the generality of the other requirements of the specifications, all work herein shall conform to the applicable requirements of the following documents. All referenced specifications, codes, and standards refer to the most current issue available at the time of Bid.
 - 1. Florida Building Code
 - 2. ASTM A123 Standard Specification for Zinc (Hot-Galvanized) Coatings on Products Fabricated from Rolled, Pressed, and Forged Steel Shapes, Plates, Bars, and Strip
 - 3. ASTM A153 Standard Specification for Zinc Coating (Hot-Dip) on Iron and Steel Hardware
 - 4. ASTM A653 Standard Specification for Steel Sheet, Zinc Coated (Galvanized), or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process
 - 5. ASTM A924 Standard Specification for General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process
 - 6. ASTM A780 Standard Practice of Repair of Damaged Hot-Dip Galvanized Coatings
 - 7. ASTM F2329 Standard Specification for Zinc Coating, Hot-Dip, Requirements for Application to Carbon and Alloy Steel Bolts, Screws, Washers, Nuts, and Special Threaded Fasteners

1.04 SUBMITTALS

- A. Submit the following in accordance with Section 01300 entitled Submittals.
 - Certification that the item(s) are galvanized in accordance with the applicable ASTM standards specified herein. This certification may be included as part of any material certification that may be required by other Sections of the Specifications.

PART 2 - PRODUCTS

2.01 GALVANIC COATING

A. Material composition of the galvanic coating shall be in accordance with the applicable ASTM standards specified herein.

PART 3 - EXECUTION

3.01 FABRICATED PRODUCTS

- A. Products fabricated from rolled, pressed, and forged steel shapes, plates, bars, and strips, 1/8-inch thick and heavier which are to be galvanized shall be galvanized in accordance with ASTM A123. Products shall be fabricated into the largest unit which is practicable to galvanize before the galvanizing is done. Fabrication shall include all operations necessary to complete the unit such as shearing, cutting, punching, forming, drilling, milling, bending, and welding. Components of bolted or riveted assemblies shall be galvanized separately before assembly. When it is necessary to straighten any sections after galvanizing, such work shall be performed without damage to the zinc coating. The galvanizer shall be a member of American Galvanizers Association.
- B. Components with partial surface finishes shall be commercial blast cleaned prior to pickling.
- C. Sampling and testing of each lot shall be performed prior to shipment from the galvanizer's facility per ASTM A123.

3.02 HARDWARE

A. Iron and steel hardware which is to be galvanized shall be galvanized in accordance with ASTM A153 and ASTM F2329.

3.03 ASSEMBLED PRODUCTS

- A. Assembled steel products which are to be galvanized shall be galvanized in accordance with ASTM A123. All edges of tightly contacting surfaces shall be completely sealed by welding before galvanizing.
- B. Assemblies shall be provided with vent and drain holes as required by the fabricator. Vent and drain hole sizes and locations shall be included in the structural steel shop drawings required in Specification 05120 Structural Steel for approval. All vent and drain holes shall be plugged and finished to be flush with and blend in with the surrounding surface. Where water intrusion can occur, the plug shall be carefully melted into the surrounding zinc coating using appropriate fluxing agent.

3.04 METAL DECK

A. Unless noted otherwise, metal deck shall be galvanized in accordance with ASTM A653 G60 minimum. In moist environments or as indicated on the Contract Drawings, galvanizing shall meet the requirements of ASTM A653 G90.

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

B. Galvanized metal deck shall meet the requirements of ASTM A924.

3.05 SHEETS

A. Iron or steel sheets which are to be galvanized shall be galvanized in accordance with ASTM A924.

3.06 REPAIR OF GALVANIZING

A. Galvanized surfaces that are abraded or damaged at any time after the application of zinc coating shall be repaired by thoroughly wire brushing the damaged areas and removing all loose and cracked coating, after which the cleaned areas shall be painted with 2 coats of zinc rich paint meeting the requirements of Federal Specification DOD-P-21035A and shall be thoroughly mixed prior to application. Zinc rich paint shall not be tinted. The total thickness of the 2 coats shall not be less than 6 mils. In lieu of repairing by painting with zinc rich paint, other methods of repairing galvanized surfaces in accordance with ASTM A780 may be used provided the proposed method is acceptable to the Engineer.

- END OF SECTION -

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 05050 METAL FASTENING

PART 1 - GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all materials, labor, and equipment required to provide all metal welds and fasteners not otherwise specified, in accordance with the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05010 Metal Materials
- B. Section 05035 Galvanizing
- C. Section 05120 Structural Steel
- D. Section 05140 Structural Aluminum

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

- A. Without limiting the generality of the other requirements of the specifications, all work herein shall conform to the applicable requirements of the following documents. All referenced specifications, codes, and standards refer to the most current issue available at the time of Bid.
 - Florida Building Code
 - 2. AC 193 Acceptance Criteria for Mechanical Anchors in Concrete Elements
 - 3. AC 308 Acceptance Criteria for Post-Installed Adhesive Anchors in Concrete Elements
 - 4. ACI 318 Building Code Requirements for Structural Concrete
 - 5. ACI 355.2 Qualifications of Post-Installed Mechanical Anchors in Concrete
 - 6. ACI 355.4 Qualification of Post-Installed Adhesive Anchors in Concrete
 - 7. AISC 348 The 2009 RCSC Specification for Structural Joints
 - 8. AISC Code of Standard Practice
 - 9. AWS D1.1 Structural Welding Code Steel
 - 10. AWS D1.2 Structural Welding Code Aluminum
 - 11. AWS D1.6 Structural Welding Code Stainless Steel
 - 12. Aluminum Association Specifications for Aluminum Structures

- 13. ASTM A572/A572M-94C Standard Specification for High Strength Low-Alloy Columbium-Vanadium Structural Steel Grade 50
- 14. ASTM A36 Standard Specification for Carbon Structural Steel
- 15. ASTM A325 Standard Specification for High-Strength Bolts for Structural Steel Joints
- 16. ASTM A489 Standard Specification for Eyebolts
- 17. ASTM A490 Standard Specification for Quenched and Tempered Alloy Steel Bolts for Structural Steel Joints
- 18. ASTM A563 Standard Specifications for Carbon and Alloy Steel Nuts
- 19. ASTM D1785 Standard Specification for Polyvinyl Chloride (PVC) Plastic Pipe
- 20. ASTM E488 Standard Test Methods for Strength of Anchors in Concrete and Masonry Elements
- 21. ASTM F436 Standard Specification for Hardened Steel Washers
- 22. ASTM F467 Standard Specification for Nonferrous Nuts for General Use
- ASTM F593 Standard Specification for Stainless Steel Bolts; Hex Cap Screws, and Studs
- 24. ASTM F594 Standard Specification for Stainless Steel Nuts
- 25. ASTM F1554 Standard Specification for Anchor Bolts, Steel, 36, 55, and 105-ksi Yield Strength

1.04 SUBMITTALS

- A. Submit the following items in accordance with Section 01300 entitled "Submittals":
 - 1. Shop Drawings providing the fastener's manufacturer and type and certification of the fastener's material and capacity.
 - 2. Anchor design calculations sealed by a Professional Engineer currently registered in the State of Florida. Only required if design not shown on Contract Drawings.
 - 3. Manufacturer's installation instructions.
 - 4. Welder certifications for each person who is to perform field welding. Certifications shall be from a recognized testing laboratory.

- 5. Certified weld inspection reports, when required.
- 6. Welding procedures.
- 7. Installer qualifications
- Certification of Installer Training

- 9. Inspection Reports
- 10. Results of Anchor Proof Testing
- 11. For outdoor equipment, anchorage calculations to resist design wind loads, signed and sealed by a Professional Engineer registered in the State of Florida.

1.05 QUALITY ASSURANCE

- A. Fasteners not manufactured in the United States shall be tested and certification provided with respect to specified quality and strength standards. Certifications of origin shall be submitted for all U.S. fasteners supplied on the project.
- B. Installer Qualifications: All concrete anchors shall be installed by an Installer with at least three years of experience performing similar installations. Installer shall be certified as an Adhesive Anchor Installer in accordance with ACI-CRSI Adhesive Anchor Installation Certification Program.
- C. Installer Training: For concrete adhesive anchors, conduct a thorough training with the manufacturer or the manufacturer's representative for the Installer on the project. Training shall consist of a review of the complete installation process for drilled-in anchors, to include but not be limited to the following:
 - 1. Hole drilling procedure.
 - 2. Hole preparation and cleaning technique.
 - 3. Adhesive injection technique and dispenser training/maintenance.
 - 4. Rebar doweling preparation and installation.
 - 5. Proof loading/torquing.
- D. All steel welding shall be performed by welders certified in accordance with AWS D1.1. All aluminum welding shall be performed by welders certified in accordance with AWS D1.2. All stainless steel welding shall be performed by welders certified in accordance with AWS D1.6. Certifications of field welders shall be submitted prior to performing any field welds.
- E. Welds and high strength bolts used in connections of structural steel will be visually inspected in accordance with Article 3.04 of this Section.
- F. The City may engage an independent testing agency to perform testing of welded connections and to prepare test reports in accordance with AWS. Inadequate welds shall be corrected or redone and retested to the satisfaction of the Engineer and/or an acceptable independent testing laboratory, at no additional cost to the City.
- G. Provide a welding procedure for each type and thickness of weld. For welds that are not prequalified, include a Performance Qualification Report. The welding procedure shall be given to each welder performing the weld. The welding procedure shall follow the format in Annex E of AWS D1.1 with relevant information presented.

H. Inspections of the adhesive dowel system shall be made by the Engineer or other representatives of the City in accordance with the requirements of the ESR published by the manufacturer. Provide adequate time and access for inspections of products and ANCHOR HOLES PRIOR TO INJECTIONS, INSTALLATION, AND PROOF TESTING.

PART 2 - PRODUCTS

2.01 ANCHOR RODS (ANCHOR BOLTS)

- A. For all conditions throughout this Contract, all anchor bolts shall be Type 316 stainless steel conforming to ASTM F-593 unless noted otherwise.
- B. Nuts shall conform to ASTM F-594, alloy 316.
- C. Where anchor rods are used to anchor galvanized steel or are otherwise specified to be galvanized, anchor rods and nuts shall be hot-dip galvanized. Galvanized anchor rods shall conform to ASTM F1554 Grade 36, and nuts shall conform to ASTM A563 Grade A.
- D. Where pipe sleeves around anchor rods are shown on the Drawings, pipe sleeves shall be cut from Schedule 80 PVC plastic piping meeting the requirements of ASTM D1785, unless noted otherwise.
- E. Equipment manufacturers, fabricators, and suppliers shall design and furnish anchor bolts as required to install the supplied units. The anchor bolt layout shall be coordinated with concrete work as specified herein.
- F. Drilled in type anchor bolts, either adhesive types or mechanical types shall not be used unless approved in writing by the manufacturer/fabricator of equipment or covers, subject to acceptance by the Engineer. All operating pieces of equipment such as pumps, generators, motors etc. shall not be anchored with wedge anchors or other mechanical anchors. Drilled in type anchor bolts shall be Type 316 stainless steel. Drilled in type anchor bolts are specified under Article 2.04 of this Section entitled "Concrete Anchors".

2.02 HIGH STRENGTH BOLTS

- A. High strength bolts and associated nuts and washers shall be in accordance with ASTM F3125, grade A325 or grade A490. Bolts, nuts and washers shall meet the requirements of AISC "Specification for Structural Joints Using High Strength Bolts".
- B. Where high strength bolts are used to connect galvanized steel or are otherwise specified to be galvanized, bolts, nuts, and washers shall be hot-dip galvanized in accordance with ASTM A325.

2.03 STAINLESS STEEL BOLTS

A. Stainless steel bolts shall conform to ASTM F-593. All underwater fasteners, fasteners in confined areas containing fluid, and fasteners in corrosive environments shall be Type 316 stainless steel. Unless otherwise specified, fasteners for aluminum and stainless steel members shall be Type 316 stainless steel.

B. Stainless steel bolts shall have hexagonal heads with a raised letter or symbol on the bolts indicating the manufacturer, and shall be supplied with hexagonal nuts meeting the requirements of ASTM F594. Nuts shall be of the same alloy as the bolts.

2.04 CONCRETE ANCHORS

A. General

- Where concrete anchors are called for on the Drawings, one of the types listed below shall be used; except, where one of the types listed below is specifically called for on the Drawings, only that type shall be used. The determination of anchors equivalent to those listed below shall be on the basis of test data performed by an approved independent testing laboratory. There are two types used:
 - a. Expansion anchors shall be mechanical anchors of the wedge, sleeve, drop-in or undercut type.
 - b. Adhesive anchors shall consist of threaded rods or bolts anchored with an adhesive system into hardened concrete. Adhesive anchors shall be two part injection type using the manufacturer's static mixing nozzle and shall be supplied as an entire system.
- 2. Expansion anchors shall not be used to hang items from above or in any other situation where direct tension forces are induced in anchor.
- 3. Unless otherwise noted, all concrete anchors which are submerged or subject to water off-gassing, or are used in hanging items or have direct tension induced upon them, or which are subject to vibration from equipment such as pumps and generators, shall be adhesive anchors.
- 4. Adhesive anchors shall conform to the requirements of ACI 355.4 or alternately to AC308. Expansion or mechanical anchors shall conform to the requirements of ACI 355.2 or alternately to AC 193.
- 5. Fire Resistance: All anchors installed within fire resistant construction shall either be enclosed in a fire resistant envelope, be protected by approved fire-resistive materials, be used to resist wind and earthquake loads only, or anchor non-structural elements.
- 6. Engineer's approval is required for use of concrete anchors in locations other than those shown on the Drawings.
- B. Concrete Anchor Design: An anchor design consists of specifying anchor size, quantity, spacing, edge distance and embedment to resist all applicable loads. Where an anchor design is indicated on the Drawings, it shall be considered an engineered design and anchors shall be installed to the prescribed size, spacing, embedment depth and edge distance. If all parts of an anchor design are provided on the Drawings except embedment depth, the anchors will be considered an engineered design and the Contractor shall provide the embedment depth as indicated in Paragraph B.3 unless otherwise directed by the Engineer. Where an anchor design is not indicated by the Engineer on the Drawings, the Contractor shall provide the anchor design per the requirements listed below.

- Structural Anchors: All concrete anchors shall be considered structural anchors if 1. they transmit load between structural elements; transmit load between non-structural components that make up a portion of the structure and structural elements; or transmit load between life-safety related attachments and structural elements. Examples of structural concrete anchors include but are not limited to column anchor bolts, anchors supporting non-structural walls, sprinkler piping support anchors, anchors supporting heavy, suspended piping or equipment, anchors supporting barrier rails, etc. For structural anchors, the Contractor shall submit an engineered design with signed and sealed calculations performed by an Engineer currently registered in the State of Florida. Structural anchors shall be of a type recommended by the anchor manufacturer for use in cracked concrete and shall be designed by the Contractor in accordance with ACI 318 Appendix D.
- 2. Non-Structural Anchors: All other concrete anchors may be considered nonstructural concrete anchors. The Contractor shall perform an engineered design for non-structural anchors. The Engineer may request the Contractor provide anchor design details for review, but submission of a signed, sealed design is not required. Non-structural anchors shall be designed by the contractor for use in uncracked concrete.

3. **Embedment Depth**

- Minimum anchor embedment shall be as indicated on the Drawings or determined by the Contractor's engineered design. Although all manufacturers listed are permitted, the embedment depth indicated on the Drawings is based on "SET XP by Simpson Strong-Tie". If the Contractor submits one of the other concrete adhesives anchors listed, the Engineer shall evaluate the required embedment and the Contractor shall provide the required embedment depth stipulated by the Engineer specific to the approved dowel adhesive.
- b. Where the embedment depth is not shown on the Drawings, concrete anchors shall be embedded no less than the manufacturer's standard embedment (expansion or mechanical anchors) or to provide a minimum allowable bond strength equal to the allowable yield capacity of the rod according to the manufacturer (adhesive anchors).
- The embedment depth shall be determined using the actual concrete compressive strength, a cracked concrete state, maximum long term temperature of 110 degrees F, and maximum short term temperature of 140 degrees F. In no case shall the embedment depth be less than the minimum or more than the maximum stated in the manufacturer's literature.

C. Structural Anchors:

1. Mechanical Anchors:

- a. Wedge Anchors: Wedge anchors shall be "Kwik Bolt TZ" by Hilti, Inc., "TruBolt +" by ITW Redhead, "Strong-Bolt 2" by Simpson Strong-Tie Co. or "Powerstud SD-1" or "Powerstud SD-2" by Powers Fasteners.
- b. Screw Anchors: Screw anchors shall be "Kwik HUS-EZ" and "KWIK HUS-EZ-I" by Hilti, Inc., "Titen HD" by Simpson Strong-Tie Co., or "Wedge-Bolt +" by Powers

METAL FASTENING

Fasteners. Bits specifically provided by manufacturer of chosen system shall be used for installation of anchors.

- Sleeve Anchors: Sleeve anchors shall be "HSL-3 Heavy Duty Sleeve Anchor" by Hilti, Inc. or "Power-Bolt +" by Powers Fasteners.
- Undercut Anchors: Undercut anchors shall be "HDA Undercut Anchor" by Hilti, Inc., "Torq-Cut Undercut Anchor" by Simpson Strong-Tie Co., "Atomic + Undercut Anchor" by Powers Fasteners

Adhesive Anchors: 2.

- a. Adhesive anchors shall be "Epcon C6+ Adhesive Anchoring System" by ITW Redhead, "HIT HY-200 Adhesive Anchoring System" by Hilti, Inc., "SET-XP Epoxy Adhesive Anchors" by Simpson Strong-Tie Co., or "Pure 110+ Epoxy Adhesive Anchor System" by Powers Fasteners.
- b. Structural adhesive anchor systems shall be IBC compliant and capable of resisting short term wind and seismic loads (Seismic Design Categories A through F) as well as long term and short term sustained static loads in both cracked and uncracked concrete in all Seismic Design Categories. Structural adhesive anchor systems shall comply with the latest revision of ICC-ES Acceptance Criteria AC308, and shall have a valid ICC-ES report in accordance with the applicable building code. No or equal products will be considered unless prequalified and approved by the Engineer and City.
- D. Non-Structural Anchors: In addition to the acceptable non-structural anchors listed below, all structural anchors listed above may also be used as non-structural anchors.

1. Mechanical Anchors:

- Wedge Anchors: Wedge anchors shall be "Kwik Bolt 3" by Hilti, Inc., "Wedge-All" by Simpson Strong-Tie Co. or "TruBolt" by ITW Redhead.
- Screw Anchors: Screw anchors shall be "Kwik HUS" by Hilti, Inc., "Wedge-Bolt" b. by Powers Fasteners "Large Diameter Tapcon (LDT) Anchor" by ITW Redhead, or "Titen HD" by Simpson Strong-Tie Co. Bits specifically provided by manufacturer of chosen system shall be used for installation of anchors.
- Sleeve Anchors: Sleeve anchors shall be "HSL Heavy Duty Sleeve Anchors" by C. Hilti, Inc. "Power-Bolt" by Powers Fasteners "Dynabolt Sleeve Anchor" by ITW Redhead, or "Sleeve-All" by Simpson Strong-Tie Co.
- Drop-In Anchors: Drop-in anchors shall be "Drop-In" by Simpson Strong-Tie Co., d. "HDI Drop-In Anchor" by Hilti, Inc. or "Multi-Set II Drop-In Anchor" by ITW Redhead.
- Undercut Anchors: Undercut anchors shall be "HDA Undercut Anchor" by Hilti, Inc., or "Torq-Cut" by Simpson Strong-Tie Co.

2. Adhesive Anchors:

- a. Adhesive anchors shall be "Epcon A7" or "Epcon C6+ Adhesive Anchoring System" by ITW Redhead, "HIT HY-200 Adhesive Anchoring System" by Hilti, Inc., "SET Epoxy Tie High Strength Anchoring Adhesive" or "AT High Strength Anchoring Adhesive" by Simpson Strong-Tie Co., or "Powers AC 100+ Gold Vinylester Injection Adhesive Anchoring System" or "T308+ Epoxy Adhesive Injection System" by Powers Fasteners.
- b. Non-structural adhesive anchors systems shall be IBC compliant and capable of resisting short term wind and seismic (Seismic Design Categories A and B) as well as long term and short term sustained static loads in uncracked concrete.
- c. Non-structural adhesive anchor embedment depth of the rod shall provide a minimum allowable bond strength that is equal to the allowable yield capacity of the rod unless noted otherwise on the Drawings.
- d. No or equal products will be considered unless prequalified and approved by the Engineer and City.

E. Concrete Anchor Rod/Bolt Materials:

- Concrete anchors used to anchor structural steel shall be a threaded steel rod per manufacturer's recommendations for proposed adhesive system, but shall not have a yield strength (fy) less than 58 ksi nor an ultimate strength (fu) less than 72.5 ksi, unless noted otherwise. Where steel to be anchored is galvanized, concrete anchors shall also be galvanized unless otherwise indicated on the Drawings.
- 2. Concrete anchors used to anchor aluminum, FRP, or stainless steel shall be Type 316 stainless steel unless noted otherwise. All underwater concrete anchors shall be Type 316 stainless steel.
- 3. Nuts, washers, and other hardware shall be of a material to match the anchors.

2.05 MASONRY ANCHORS

- A. Anchors for fastening to solid or grout-filled masonry shall be adhesive anchors as specified above for concrete anchors.
- B. Anchors for fastening to hollow masonry or brick shall be adhesive anchors consisting of threaded rods or bolts anchored with an adhesive system dispensed into a screen tube inserted into the masonry. The adhesive system shall use a two-component adhesive mix and shall inject into the screen tube with a static mixing nozzle. Thoroughly clean drill holes of all debris and drill dust with nylon (not wire) brush prior to installation of adhesive and anchor. Contractor shall follow manufacturer's installation instructions. The adhesive system shall be "HIT HY-70 System" as manufactured by Hilti, Inc., or "SET-XP Epoxy-Tie or "AT-XP Acrylic-Tie" as manufactured by Simpson Strong-Tie Co.
- C. Masonry anchors used to anchor steel shall be a threaded steel rod per manufacturer's recommendations for proposed adhesive system, but shall not have a yield strength (fy) less than 58 ksi nor an ultimate strength (fu) less than 72.5 ksi, unless noted otherwise. Where steel to be anchored is galvanized, masonry anchors shall also be galvanized.

D. Masonry anchors used to anchor aluminum, FRP, or stainless steel shall be Type 304 stainless steel unless noted otherwise. All underwater anchors shall be Type 316 stainless steel.

2.06 WELDS

- A. Electrodes for welding structural steel and all ferrous steel shall comply with AWS Code, using E70 series electrodes for shielded metal arc welding (SMAW), or F7 series electrodes for submerged arc welding (SAW).
- B. Electrodes for welding aluminum shall comply with the Aluminum Association Specifications and AWS D1.2.
- C. Electrodes for welding stainless steel and other metals shall comply with AWS D1.6.

2.07 WELDED STUD CONNECTORS

A. Welded stud connectors shall conform to the requirements of AWS D1.1 Type C.

2.08 EYEBOLTS

A. Eyebolts shall conform to ASTM A489 unless noted otherwise.

2.09 HASTELLOY FASTENERS

A. Hastelloy fasteners and nuts shall be constructed of Hastelloy C-276.

2.10 ANTISEIZE LUBRICANT

A. Antiseize lubricant shall be Graphite 50 Anti-Seize by Loctite Corporation, 1000 Anti-Seize Paste by Dow Corning, 3M Lube and Anti-Seize by 3M, or equal.

PART 3 - EXECUTION

3.01 MEASUREMENTS

A. The Contractor shall verify all dimensions and review the Drawings and shall report any discrepancies to the Engineer for clarification prior to starting fabrication.

3.02 ANCHOR INSTALLATION

- A. Anchor Rods, Concrete Anchors, and Masonry Anchors
 - Anchor rods shall be installed in accordance with AISC "Code of Standard Practice" by setting in concrete while it is being placed and positioned by means of a rigidly held template. Overhead adhesive anchors, and base plates or elements they are anchoring, shall be shored as required and securely held in place during anchor setting to prevent movement during anchor installation. Movement of anchors during curing is prohibited.

- 2. The Contractor shall verify that all concrete and masonry anchors have been installed in accordance with the manufacturer's recommendations and that the capacity of the installed anchor meets or exceeds the specified safe holding capacity.
- 3. Concrete anchors shall not be used in place of anchor rods without Engineer's approval.
- 4. All stainless steel threads shall be coated with antiseize lubricant.

B. High Strength Bolts

- All bolted connections for structural steel shall use high strength bolts. High strength bolts shall be installed in accordance with AISC 348 "The 2009 RCSC Specification for Structural Joints". All bolted joints shall be Type N, snug-tight, bearing connections in accordance with AISC Specifications unless noted otherwise on the Drawings.
- 2. All stainless steel bolts shall be coated with antiseize lubricant.

C. Concrete Anchors

- 1. Concrete at time of anchor installation shall be a minimum age of 21 days, have a minimum compressive strength of 2500 psi, and shall be at least 50 degrees F.
- 2. Concrete anchors designed by the Contractor shall be classified as structural or nonstructural based on the requirements indicated above.

3. Concrete Anchor Testing:

- a. At all locations where concrete anchors meet the requirements for structural anchors at least 5 percent of all concrete anchors installed shall be proof tested to the value indicated on the Drawings, with a minimum of one tested anchor per anchor group. If no test value is indicated on the Drawings but the installed anchor meets the requirements for structural anchors, the Contractor shall notify the Engineer to allow verification of whether anchor load proof testing is required.
- b. Contractor shall submit a plan and schedule indicating locations of anchors to be tested, load test values and proposed anchor testing procedure (including a diagram of the testing equipment proposed for use) to the Engineer for review prior to conducting any testing. Testing of anchors shall be in accordance with ASTM E488 for the static tension test. If additional tests are required, inclusion of these tests shall be as stipulated on Contract Drawings.
- c. Where Contract Documents indicate anchorage design to be the Contractor's responsibility and the anchors are considered structural per the above criteria, the Contractor shall submit a plan and schedule indicating locations of anchors to be proof tested and load test values, sealed by a Professional Engineer currently registered in the State of Florida. The Contractor's Engineer shall also submit documentation indicating the Contractor's testing procedures have been reviewed and the proposed procedures are acceptable. Testing procedures shall be in accordance with ASTM E488.

- d. Concrete Anchors shall have no visible indications of displacement or damage during or after the proof test. Concrete cracking in the vicinity of the anchor after loading shall be considered a failure. Anchors exhibiting damage shall be removed and replaced. If more than 5 percent of tested anchors fail, then 100 percent of anchors shall be proof tested.
- e. Proof testing of concrete anchors shall be performed by an independent testing laboratory hired directly by the Contractor and approved by the Engineer. The Contractor shall be responsible for costs of all testing, including additional testing required due to previously failed tests.
- 4. All concrete anchors shall be installed in strict conformance with the manufacturer's printed installation instructions. A representative of the manufacturer shall be on site when required by the Engineer.
- 5. All holes shall be drilled with a carbide bit unless otherwise recommended by the manufacturer. No cored holes shall be allowed unless specifically approved by the Engineer. If coring holes is allowed by the manufacturer and approved by the Engineer, cored holes shall be roughened in accordance with manufacturer requirements. Thoroughly clean drill holes of all debris and drill dust with compressed air followed by a wire brush prior to installation of adhesive and threaded rod/bolt unless otherwise recommended by the manufacturer. Degree of hole dampness shall be in strict accordance with manufacturer recommendations. Where depth of hole exceeds the length of the static mixing nozzle, a plastic extension hose shall be used to ensure proper adhesive injection from the back of the hole. Injection of adhesive into the hole shall utilize a piston plug to minimize the formation of air pockets. Wipe rod free from oil that may be present from shipping or handling.

D. Other Bolts

 All dissimilar metal shall be connected with appropriate fasteners and shall be insulated with a dielectric or approved equal. Unless otherwise specified, where aluminum and steel members are connected together they shall be fastened with Type 316 stainless steel bolts and insulated with micarta, nylon, rubber, or equal.

3.03 WELDING

- A. All welding shall comply with AWS Code for procedures, appearance, quality of welds, qualifications of welders and methods used in correcting welded work.
- B. Welded stud connectors shall be installed in accordance with AWS D1.1.

3.04 INSPECTION

A. High strength bolting will be visually inspected in accordance with AISC 348 "The 2009 RCSC Specification for Structural Joints". Rejected bolts shall be either replaced or retightened as required. In cases of disputed bolt installation, the bolts in question shall be checked by a calibrated wrench certified by an independent testing laboratory. The certification shall be at the Contractor's expense.

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

- B. Field welds will be visually inspected in accordance with AWS Codes. Inadequate welds shall be corrected or redone as required in accordance with AWS Codes.
- C. Post installed anchors shall be inspected as required by ACI 318.

3.05 CUTTING OF EMBEDDED REBAR

A. The Contractor shall not cut embedded rebar cast into structural concrete during installation of post-installed fasteners without prior approval of the Engineer.

- END OF SECTION -

SECTION 05120 STRUCTURAL STEEL

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all equipment, materials, and services not otherwise specified for the fabrication, delivery, unloading, handling, storing, and erection of all structural steel work as shown on the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05500 Metal Fabrications
- B. Section 09900 Painting

1.03 REFERENCED SPECIFICATIONS, CODES, AND STANDARDS

- A. Without limiting the generality of other requirements of these Specifications, all Work specified herein shall conform to or exceed the requirements of the Florida Building Code, and the applicable requirements of the following documents to the extent that the provisions of such documents are not in conflict with the requirements of this Section:
 - 1. AISC "Code of Standard Practice for Steel Buildings and Bridges."
 - 2. AISC "Specification for Structural Steel Buildings."
 - 3. AISC "Specification for Design Fabrication and Erection of Structural Steel for Buildings", and including the "Commentary of the AISC Specification".
 - 4. AISC "Specification of Structural Joints Using ASTM A325 or A490 Bolts", as published by the American Institute of Steel Construction.
 - 5. AWS "Structural Welding Code", AWS Article D1.1 and "Standard Qualification Procedure", as published by American Welding Society.

1.04 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in Section 01300 entitled "Submittals", the Contractor shall submit the following:
 - 1. Certified Mill Test Reports
 - Affidavit of Compliance with grade specified
 - 3. Shop Drawings
 - 4. Certified Weld Inspection Reports
- B. All Shop Drawings shall include the following:
 - 1. Layout drawings indicating all structural shapes, sizes, and dimensions.

- 2. Beam and column schedules.
- 3. Detail drawings indicating jointing and anchoring details.
- 4. All steel work, framing, and details shall conform to Article 1.03 of this Section.
- C. No fabrication shall be started until Shop Drawings have been approved by the Engineer.
- D. Where structural design of the steel is not indicated on the Drawings, the Contractor shall submit design drawings of the steel framing, connections and anchor bolts. Such drawings shall be signed and sealed by a Professional Engineer registered in the State of Florida.

1.05 QUALITY ASSURANCE

- A. Shop inspection may be required by the City at his own expense. The Contractor shall give ample notice to the Engineer prior to the beginning of any fabrication work so that inspection may be provided. The Contractor shall furnish all facilities for the inspection of materials and workmanship in the shop, and the inspectors shall be allowed free access to the necessary parts of the works. Inspectors shall have the authority to reject any materials or Work which does not meet the requirements of these Specifications. Inspection at the shop is intended as a means of facilitating the Work and avoiding errors, but is expressly understood that it will in no way relieve the Contractor from his responsibility for furnishing proper materials or workmanship under this Specification.
- B. The City may engage inspectors to inspect welded connections and to perform tests and prepare test reports.
 - Ten percent of all butt and bevel welds which extend continuously for 24 inches or less will be completely tested in accordance with AWS D1.1, Part B, Radiographic Testing of Welds, Chapter 6. All butt and bevel welds which extend continuously for more than 24 inches will be spot tested at intervals not exceeding 36 inches.
 - 2. Welds that are required by the Engineer to be corrected shall be corrected or redone and retested as directed, at the Contractor's expense and to the satisfaction of the Engineer and/or an acceptable independent testing lab.

PART 2 – PRODUCTS

2.01 MATERIAL INFORMATION

A. The term "Structural Steel" shall be as defined in the "Codes of Standard Practices for Steel Buildings and Bridges" of the American Institute of Steel Construction (AISC). Included as "Structural Steel" shall be all stiffeners, plates, sag rods and other miscellaneous metal required for a complete installation.

2.02 MATERIALS

A. Structural Steel:

- Structural steel shall conform to Specification Section 05010 Metal Materials. Certified mill test reports or certified reports of tests made by the fabricator or a testing laboratory in accordance with ASTM A6 and the governing specification shall constitute evidence of conformity with the above ASTM specification. Additionally, the fabricator shall, if requested, provide an affidavit stating that the structural steel furnished meets the requirements of the grade specified. Unidentified steel, if free from surface imperfections, may be used for parts of minor importance or for unimportant details where the precise physical properties of the steel and its weldability would not affect the strength of the structure. All other unidentified steel will be rejected and shall be removed from the site and replaced by the Contractor, all at the expense of the Contractor.
- 2. Structural steel shall be cleaned and coated with a shop paint primer; except, that primer shall be omitted for surfaces to be galvanized with no further coating. Surface preparation and primer shall be as specified in Section 09900 Painting. Shop prime coat shall be applied within eight hours after surface preparation. Shop applied primers shall be as specified in Section 09900 Painting.
- B. Bolts: All fasteners are specified in Section 05050 Metal Fastening.
- C. Rivet Steel: Rivet steel shall conform to the following Specification, Structural Rivet Steel, ASTM A502-1. Certified mill test reports shall constitute sufficient evidence of conformity with the Specifications.
- D. Anchor Bolts: Anchor bolts for structural steel shall be of the size and configuration shown on the Drawings and shall conform to Section 05050 Metal Fastening.
- E. Filler Metal for Welding: Welding electrodes for manual shielded metal arc welding shall conform to the Specifications for Mild Steel Covered Arc-Welding Electrodes, AWS A5.1. Bare electrodes and granular flux for the submerged-arc process shall conform to AWS-A5.17 as required for the conditions of actual use.

PART 3 - EXECUTION

3.01 MEASUREMENT

A. The Contractor shall verify all dimensions and shall make any field measurements necessary and shall be fully responsible for accuracy and layout of Work. The Contractor shall review the Drawings and any discrepancies shall be reported to the Engineer for clarification prior to starting fabrication.

3.02 FABRICATION

A. General: Fabrication shall be in accordance with the American Institute for Steel Construction "Specification for the Design, Fabrication and Erection of Structural Steel for Buildings" of the AISC.

B. Anchor Bolts:

- 1. All anchor bolts for structural steel erection and other incidental items of the structural steel required to be built into concrete shall be properly set and securely held in position in the forms before the concrete is placed.
- 2. Anchor bolts and setting plans for steel columns shall be provided at the site, marked or tagged for ready identification.
- 3. Bolts shall be accurately set to template and at elevation to provide suitable projection above concrete and/or grout. Maximum tolerances allowable from indicated locations are: (tolerances may be tighter for manufactured/fabricated elements of work):
 - a. Elevation of concrete before grouting: + 1/4 inch.
 - b. Elevation of top of anchor bolts: + 1/2 inch to 0 inch under.
 - c. Line of anchor bolt: + 1/8 inch.
- 4. All holes in structural steel members required for anchors, anchor bolts, bolt holes, sag rods for securing wood or other members or for passing of other work noted on the drawings shall be provided by the fabricator and detailed on the Shop Drawings.
- 5. Where misalignment between anchor bolts and bolt holes in steel members are encountered, the Engineer shall be immediately notified. The Contractor shall submit a method to remedy the misalignment for review by the Engineer.

C. Material

1. All materials shall be properly worked and match-marked for field assembly. Where finishing is required, assembly shall be completed including bolting and welding of units before start of finishing operations.

3.03 ERECTION

- A. The erection of all structural steel shall conform to the applicable requirements of the current edition of the "Specifications for the Design, Fabrication and Erection of Structural Steel for Buildings" of the ASIC. All temporary bracing, guys and bolts as may be necessary to ensure the safety of the structure until the permanent connections have been made shall be provided by the Contractor. High strength steel bolts shall conform to the Specifications of the Research Council on Riveted and Bolted Structural Joints of the Engineering Foundation for "Structural Joints using ASTM A325 or A490 Bolts".
- B. Except where otherwise noted on the Drawings or in this Specification, all shop connections shall be welded. All field connections shall be accurately fitted up before being bolted. Drifting shall be only such as will bring the parts into position and shall not be sufficient to enlarge the holes or to distort the metal. All unfair holes shall be drilled or reamed.

4

C. High Strength Steel Bolts:

- 1. All bolted connections with high strength bolts shall use Direct Tension Indicator Devised in accordance with Paragraph 8(d)(4) of the "Specification for Structural Joints using ASTM A325 or A490 Bolts", approved by the Research Council on Structural Connections, November 13, 1985. High strength bolts shall be installed in properly aligned holes and tightened to at least the minimum tension specified in the table below. Alternately, calibrated wrench tightened may be used in lieu of Direct Tension Devices provided the requirements of Paragraph 8(d)(2) of the same Specification are met.
- 2. Fastener tension required for connections subject to direct tension:

Minimum Tension in 1000's of Pounds (kips)

Nominal Bolt Size (Inches)	A325 Bolts	A490 Bolts
1/2	12	15
5/8	19	24
3/4	28	35
7/8	39	49
1	51	64
1-1/8	56	80
1-1/4	71	102
1-3/8	85	121
1-1/2	103	148

- 3. Wrenches may be manual torque or power wrenches designed by the manufacturer for use with high strength bolts. If manual torque wrenches are used, their dials shall be calibrated on the job. If power wrenches are used, the manufacturer's recommendations shall be carefully followed and proper working conditions of the machine demonstrated before the work is started.
- 4. The Engineer may review the procedure for calibration of wrenches and installation of bolts and, in general, shall satisfy himself that all requirements of the Specifications for "Structural Joints using ASTM A325 or A490 Bolts" are met.

D. Cutting and Burning

- The use of gas cutting torch in the field for correcting fabrication errors will not be permitted on any major member in the structural framing. Its use may be permitted on minor members if the member is not under stress, and then only after the written acceptance of the Engineer has been obtained. No cutting of structural steel members in the field will be allowed except by the written acceptance by the Engineer.
- Holes shall be provided per AISC Specifications, or as indicated for securing other Work to structural steel framing and for the passage of other Work through steel

framing members. Threaded nuts shall be welded to framing, and other specialty items, as shown, to receive other Work. No torch cut hoes will be permitted.

E. Grouting of Base Plates and Bearing Plates

- All loose column base plates and billets shall be accurately set to the designated levels on steel wedges or angle screens in preparation for grouting under this Contract. Leveling plates grouted in place shall be installed under all structural steel columns.
- Prior to the placement of non-shrink epoxy grout beneath base and bearing plates, the bottom surface of the plates shall be cleaned of all foreign materials, and concrete and masonry bearing surface shall also be cleaned of all foreign materials and roughened to improve bonding.
- 3. Anchor bolts shall be tightened after the supported members have been positioned and plumbed and the non-shrink grout has attained its specified strength.
- 4. Baseplates shall be grouted with non-shrink epoxy grout to assure full uniform bearing. Grouting shall be done prior to placing loads on the structure.

F. Welding

- Welding, where required, shall be performed in accordance with the requirements of the AWS - Structural Welding Code. All shop and field welds in structural steel shall be visually inspected by an AWS qualified welding inspector. The Contractor shall furnish a letter of certification for each welded connection stating that these requirements have been met.
- 2. In assembly and during welding the component parts of built-up work shall be held in place by sufficient clamps, temporary bolts or other adequate means to keep parts in proper position. Where temporary bolts are used, to hold the parts together in steel plates or similar work the temporary bolts shall be removed and the holes shall be filled with welding material where practical. Otherwise, the nuts shall be tightened and the bolt threads outside the unit shall be burned and the bolt opened to prevent the nut from loosening.

G. Misfits at Bolted Connections:

- Where misfits in erection bolting are encountered, the Engineer shall be immediately notified. The Contractor shall submit a method to remedy the misfit for review by the Engineer. The Engineer will determine whether the remedy is acceptable or if the member must be refabricated.
- Incorrectly sized or misaligned holes in members shall not be enlarged by burning or by the use of drift pins. The Contractor shall notify the Engineer immediately and shall submit a proposed method of remedy for review by the Engineer.

3.04 FIELD ASSEMBLY

A. Structural frames shall be set accurately to the lines and elevations indicated. The various members shall be aligned and adjusted to form a part of a complete frame or structure

before permanently fastened. Bearing surfaces and other surfaces which will be in permanent contact shall be cleaned before assembly. Necessary adjustments to compensate for discrepancies in elevations and alignments shall be performed.

B. Individual members of the structure shall be leveled and plumbed within specified AISC tolerances. The Contractor shall provide and install all temporary bracing required until structure is complete.

3.05 PRODUCT DELIVERY, STORAGE AND HANDLING

- A. Structural members shall be loaded in such a manner that they may be transported and unloaded without being over-stressed, deformed or otherwise damaged.
- B. Structural steel members and packaged materials shall be protected from corrosion and deterioration. Material shall be stored in a dry area and shall not be placed in direct contact with the ground. Materials shall not be placed on the structure in a manner that might cause distortion or damage to the members or the supporting structures. Repair or replace damaged materials or structures as directed.

3.06 PAINTING

A. General Requirements

- Steel work which will be encased in concrete shall not be painted, and all other steel work that is not to be galvanized shall be given one prime coat and one coat of shop paint before shipment to the field as specified under Section 09900 entitled "Painting". Steel work to be encased in concrete shall have all loose rust and scale removed by wire brushing or other methods as accepted by the Engineer prior to encasement.
- After inspection and acceptance and before leaving the shop, all steel work specified
 to be painted shall be sand blasted or wheel abraded by the fabricator, of loose mill
 scale, loose rust, weld slag or flux deposit, dirt and other foreign matter to satisfy the
 following requirements of the Steel Structures Painting Council: Specification
 (SSPC), SP-6 NACE 3 for all steel except immersion service; for all steel in immersion
 service, SSPC-SP-5 NACE1.
- 3. Cleaned metal shall be primed or pretreated within six hours after cleaning to prevent new rust forming.
- B. Contact Surfaces: Contact surfaces shall be cleaned and primed in accordance with Item A of this Section but shall not be painted.
- C. Finished Surfaces: Machine finished surfaces shall be protected against corrosion by rust-inhibiting coating that can be easily removed prior to erection or which has characteristics that make removal unnecessary prior to erection.
- D. Surfaces Adjacent to Field Welds: Surfaces within 2 inches of an field weld location shall be free of materials that would prevent proper welding or produce objectionable fumes while welding is being done.
- E. Painting Schedule

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

- After erection of the structural steel and miscellaneous steel is complete, the Contractor shall touch up all abrasions in the shop coat and shall spot paint all field rivets, field bolts and field welds with the paint and procedure specified in Section 09900 entitled "Painting".
- All painting performed at the fabricator's shop shall be subject to inspection by the City or his representative. All parts of the Work shall be made accessible to the City or his representative. The Contractor shall correct such work as found defective under this Section of the Specification.
- 3. Field cuts on galvanized steel shall be wire brushed and coated with Carbomastic 15, Carboline Co., or equal, to a thickness of 4 to 6 mils.

- END OF SECTION -

05120 8

STRUCTURAL STEEL

CAM #25-0925

Exhibit 1D

Page 1077 of 2050

SECTION 05140 STRUCTURAL ALUMINUM

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all equipment, labor, materials, and services required to provide all structural aluminum work in accordance with the Contract Documents. The term "structural aluminum" shall include items as defined in the Aluminum Association "Specifications for Aluminum Structures".

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05010 Metal Materials
- B. Section 05050 Metal Fastening

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

- A. Without limiting the generality of other requirements of the Specifications, all work specified herein shall conform to the applicable requirements of the following documents. All referenced specifications, codes, and standards refer to the most current issue available at the time of the Bid.
 - 1. Florida Building Code
 - 2. Aluminum Association "Specifications for Aluminum Structures"
 - AWS D1.2 "Structural Welding Code".

1.04 SUBMITTALS

- A. Submit the following in accordance with Section 01300 Submittals.
 - 1. Certified Mill Test Reports
 - 2. Affidavit of Compliance with grade specified
 - 3. Shop Drawings which include the following:
 - a. Layout drawings indicating all structural shapes, sizes, and dimensions.
 - b. Beam and column schedules.
 - c. Detailed drawings indicating jointing, anchoring and connection details.
- B. Where structural design of the aluminum is not indicated on the Drawings, the Contractor shall submit design drawings of the aluminum framing, connections and anchor bolts. Such drawings shall be signed and sealed by a Professional Engineer registered in the State of Florida.

1.05 QUALITY ASSURANCE

A. Shop inspection may be required by the City at its own expense. The Contractor shall give ample notice to the Engineer prior to the beginning of any fabrication work so that inspection may be provided. The Contractor shall furnish all facilities for the inspection of materials and workmanship in the shop, and the inspectors shall be allowed free access to the necessary parts of the work. Inspectors shall have the authority to reject any materials or work which do not meet the requirements of these Specifications. Inspection at the shop is intended as a means of facilitating the work and avoiding errors, but is expressly understood that it will in no way relieve the Contractor from its responsibility for furnishing proper materials or workmanship under this Specification.

PART 2 - PRODUCTS

2.01 MATERIALS

- A. Structural aluminum shall comply with Section 05010 Metal Materials.
- B. Fasteners for structural aluminum shall be in accordance with Section 05050 Metal Fastening. Fasteners shall be Type 316 stainless steel.
- C. Electrodes for welding shall be in accordance with Section 05050 Metal Fastening.

PART 3 - EXECUTION

3.01 MEASUREMENT

A. The Contractor shall verify all dimensions and shall make any field measurements necessary and shall be fully responsible for accuracy and layout of work. The Contractor shall review the Drawings and any discrepancies shall be reported to the Engineer for clarification prior to starting fabrication.

3.02 FABRICATION

- A. Fabrication shall be in accordance with the Aluminum Association "Specifications for Aluminum Structures". Fabrication shall begin only after Shop Drawing approval.
- B. Except where otherwise noted on the Drawings or in this Specification, all shop connections shall be welded.
- C. All holes in structural aluminum members required for anchors, anchor bolts, bolt holes, or other members or for attachment of other work shall be provided by the fabricator and detailed on the Shop Drawings.
- D. All materials shall be properly worked and match-marked for field assembly.

3.03 DELIVERY, STORAGE AND HANDLING

A. Structural members shall be loaded in such a manner that they may be transported and unloaded without being over-stressed, deformed or otherwise damaged.

B. Structural aluminum members and packaged materials shall be protected from corrosion and deterioration. Material shall be stored in a dry area and shall not be placed in direct contact with the ground. Materials shall not be placed on the structure in a manner that might cause distortion or damage to the members or the supporting structures. The Contractor shall repair or replace damaged materials or structures as directed.

3 04 FRECTION

- A. All temporary bracing, guys and bolts as may be necessary to ensure the safety of the structure until the permanent connections have been made shall be provided by the Contractor.
- B. Structural members shall be set accurately to the lines and elevations indicated. The various members shall be aligned and adjusted to form a part of a complete frame or structure before being permanently fastened. A licensed civil engineer shall survey the structural aluminum during erection and shall provide a final survey indicating elevations and locations of all major members. Necessary adjustments to compensate for discrepancies in elevations and alignments shall be performed.
- C. No cutting of structural aluminum members in the field will be allowed except by the written approval of the Engineer.
- D. Bearing surfaces and other surfaces which will be in permanent contact shall be cleaned before assembly.
- E. Field welding shall not be permitted unless specifically indicated in the Drawings or approved in writing by the Engineer. All field welding shall comply with Section 05050 Metal Fastening.
- F. All bolted connections shall comply with Section 05050 Metal Fastening.
- G. All field connections shall be accurately fitted up before being bolted. Drifting shall be only such as will bring the parts into position and shall not be sufficient to enlarge the holes or to distort the metal. All unfair holes shall be drilled or reamed.

H. Misfits at Bolted Connections

- Where misfits in erection bolting are encountered, the Engineer shall be immediately notified. The Contractor shall submit a method to remedy the misfit for review by the Engineer. The Engineer will determine whether the remedy is acceptable or if the member must be refabricated.
- Incorrectly sized or misaligned holes in members shall not be enlarged by burning or by the use of drift pins. The Contractor shall notify the Engineer immediately and shall submit a proposed method of remedy for review by the Engineer.
- 3. Where misalignment between anchor bolts and bolt holes in aluminum members are encountered, the Engineer shall be immediately notified. The Contractor shall submit a method to remedy the misalignment for review by the Engineer.
- I. Grouting of Base Plates and Bearing Plates

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- 1. The bottom surface of the plates shall be cleaned of all foreign materials, and concrete or masonry bearing surface shall be cleaned of all foreign materials and roughened to improve bonding.
- 2. Accurately set all base and bearing plates to designated levels with steel wedges or leveling plates.
- 3. Baseplates shall be grouted with non-shrink epoxy grout to assure full uniform bearing. Grouting shall be done prior to placing loads on the structure. Non-shrink epoxy grout shall conform to Section 03315 Grout.
- 4. Anchor bolts shall be tightened after the supported members have been positioned and plumbed and the non-shrink grout has attained its specified strength.
- J. Where finishing is required, assembly shall be completed including bolting and welding of units before start of finishing operations.
- K. All aluminum surfaces in contact with concrete shall be given a heavy coat of bituminous paint. Aluminum surfaces in contact with other metals shall be properly isolated.

3.05 FINISHES

A. Structural aluminum shall be furnished mill finished unless noted otherwise. Anodized finish shall be furnished where noted on the Drawings.

- END OF SECTION -

Page 1081 of 2050

SECTION 05500 METAL FABRICATIONS

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish all materials, labor, and equipment required to provide all metal fabrications not specifically included in other Sections, complete and in accordance with the requirements of the Contract Documents.
- B. Work shall include but may not be limited to lintels, guard posts (bollards).

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05035 Galvanizing
- B. Section 05050 Metal Fastening
- C. Section 09900 Painting
- D. Certain specific items are included in other Sections of the Specifications. See the section for the specific item in question.

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

- A. Without limiting the generality of other requirements of these Specifications, all work specified herein shall conform to or exceed the requirements of the Florida Building Code and the applicable requirements of the following documents to the extent that the provisions of such documents are not in conflict with the requirements of this Section:
 - 1. Florida Building Code
 - 2. American Institute of Steel Construction (AISC) "Specifications for the Design, Fabrication, and Erection of Structural Steel for Buildings" and "Commentary on the AISC Specification."
 - 3. American Iron and Steel Institute (AISI) "Specifications for the Design of Cold-Formed Steel Structural Members" and "Commentary on the AISI Specification."
 - 4. Occupational Safety and Health Administration (OSHA) Regulations.
 - 5. Aluminum Association "Specifications for Aluminum Structures" and "Engineering Data for Aluminum Structures."

1.04 SUBMITTALS

- A. Submit the following in accordance with Section 01300, Submittals.
 - 1. Complete fabrication and erection drawings of all metalwork specified herein.
 - 2. Other submittals as required in accordance with Section 05010, Metal Materials, and Section 05050, Metal Fastening.

PART 2 – PRODUCTS

2.01 METAL MATERIALS

A. Materials are specified in Section 05010 entitled "Metal Materials".

2.02 METAL FASTENING

A. All welds and fasteners used in metal fabrication shall conform to Section 05050, Metal Fastening, unless noted otherwise.

2.03 LINTELS

- A. Where metal lintels are shown on the Drawings, provide lintels as specified herein with 8 inches minimum bearing each side unless noted otherwise.
- B. All metal lintels shall be steel in accordance with Section 05120, Structural Steel, and shall be galvanized in accordance with Section 05035, Galvanizing, unless noted otherwise.

2.04 GUARD POSTS (BOLLARDS)

- A. Guard posts shall be as detailed on the Drawings, including plastic covers, pipe sleeves, concrete fill, crushed fill and grouting to secure parts. If not indicated on the Drawings, guard posts shall be minimum 6-inch diameter steel pipe. Pipe for guards shall be galvanized steel, Schedule 40 pipe that conforms to ASTM A53. Painting shall be in accordance with Section 09900 entitled "Painting".
- B. Guard posts shall be concrete filled and crowned, as detailed on the Drawings.

PART 3 - EXECUTION

3.01 FABRICATION

- A. All measurements and dimensions shall be based on field conditions and shall be verified by the Contractor prior to fabrication. Such verification shall include coordination with adjoining work.
- B. All fabricated work shall be shop fitted together as much as practicable, and delivered to the field, complete and ready for erection. All miscellaneous items such as stiffeners, fillets, connections, brackets, and other details necessary for a complete installation shall be provided.
- C. All work shall be fabricated and installed in a manner that will provide for expansion and contraction, prevent shearing of bolts, screws, and other fastenings, ensure rigidity, and provide a close fit of sections.
- D. Finished members shall conform to the lines, angles, and curves shown on the Drawings and shall be free from distortions of any kind.

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- E. All shearings shall be neat and accurate, with parts exposed to view neatly finished. Flame cutting is allowed only when performed utilizing a machine.
- F. All shop connections shall be welded unless otherwise indicated on the Drawings or specified herein. Bolts and welds shall conform to Section 05050, Metal Fastening. All fastenings shall be concealed where practicable.
- G. Fabricated items shall be shop painted when specified in Section 09900, Painting.

3.02 INSTALLATION

- A. Assembly and installation of fabricated system components shall be performed in strict accordance with manufacturer's recommendations.
- B. All miscellaneous metalwork shall be erected square, plumb and true, accurately fitted, adequately anchored in place, and set at proper elevations and positions
- C. Metal work shall be field painted when as specified in accordance with Section 09900, Painting.

- END OF SECTION -

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 05510 METAL STAIRS

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all materials, labor, and equipment required to provide all metal stairs in accordance with the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05010 Metal Materials
- B. Section 05050 Metal Fastening
- C. Section 05140 Structural Aluminum
- D. Section 05520 Handrails and Railings
- E. Section 05531 Gratings, Floor Plates and Access Hatches

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

- A. Without limiting the generality of the other requirements of the specifications, all work herein shall conform to the applicable requirements of the following documents. All referenced specifications, codes, and standards refer to the most current issue available at the time of Bid.
 - 1. Florida Building Code
 - 2. AISC Specification for Structural Steel Buildings
 - 3. AISI Specification for the Design of Cold-Formed Steel Structural Members
 - 4. Aluminum Association Specifications for Aluminum Structures

1.04 SUBMITTALS

- A. Submit the following in accordance with Section 01300 entitled "Submittals".
 - 1. Complete fabrication and erection drawings of all metal work specified herein.
 - 2. Other submittals as required in accordance with Section 05010 Metal Materials and Section 05050 Metal Fastening.

PART 2 – PRODUCTS

2.01 METAL MATERIALS

A. Metal materials used for metal stairs shall conform to Section 05010 entitled "Metal Materials", unless noted otherwise.

2.02 METAL FASTENING

A. All welds and fasteners used in metal stairs shall conform to Section 05050 entitled "Metal Fastening", unless noted otherwise.

2.03 METAL STAIRS AND LANDINGS

- A. Stair stringers and structural framing of landings shall be fabricated from aluminum as indicated on the Drawings.
 - 1. Aluminum stairs shall be fabricated from aluminum alloy 6061-T6 in accordance with Section 05140 entitled "Structural Aluminum".
- B. Regardless of material of stringers, all stair treads shall be aluminum.
- C. Where metal landings are required as indicated on the Drawings, gratings at landings shall conform to Section 05531 entitled "Grating, Floor Plates, and Access Hatches".
- D. Handrails for metal stairs shall conform to Section 05520 entitled "Handrails and Railings". Contractor shall coordinate attachment of handrails to metal stairs.
- E. All clips, anchors, and necessary appurtenances shall be provided for a complete and rigid installation.
- F. Closure plates shall be provided for all exposed ends of stringers.
- G. All exposed connections shall be welded and ground smooth, unless otherwise indicated on the Drawings.
- H. Stairs and landings shall be designed to support a 100 psf live load, minimum, unless otherwise indicated on the Drawings.

2.04 STAIR TREADS

- A. Stair treads shall be fabricated of grating sections identical to walkways and landings.
- B. An abrasive nosing shall be provided at the edge of stair tread.
- C. Stair tread shall be fabricated in accordance with the details shown on the Drawings.
- D. Treads shall be attached to stringers with Type 316 stainless steel bolts and nuts. Connection angles shall be of aluminum construction.

2.05 SAFETY STAIR NOSINGS

- A. Abrasive cast aluminum, safety stair nosings shall be provided on all concrete or concrete filled steel pan stairs, including the top stair of metal stairs that attach to concrete, and as shown on the Drawings unless noted otherwise.
- B. Nosing shall be 3 inches wide and shall extend the full width of the stairway minus 3 inches on either side. Nosing shall be cast into the concrete and held in place with butterfly type extruded anchors.

C. The nosing shall be "Style 231-A", by Amstep Products, "Alumogrit Type 101", by Wooster Products, Inc., "Type AX", by Safe-T-Metal Company. For steel pan concrete filled stairs, nosing shall be "Type 101-SP", Wooster Products, Inc., or "Type AXPE", by Safe-T-Metal Company. For pan stairs, nosing shall be continuous over corner of stair treads to fully protect corner of treads from abrasion. All exposed fasteners shall be Type 304 stainless steel.

PART 3 - EXECUTION

3.01 FABRICATION

- A. All measurements and dimensions shall be based on field conditions and shall be verified by the Contractor prior to fabrication. Such verification shall include coordination with all adjoining work.
- B. All fabricated work shall be shop fitted together as much as practicable, and delivered to the field, complete and ready for erection. All miscellaneous items such as stiffeners, fillets, connections, brackets, and other details necessary for a complete installation shall be provided.
- C. All work shall be fabricated and installed in a manner that will provide for expansion and contraction, prevent shearing of bolts, screws, and other fastenings, ensure rigidity, and provide a close fit of sections.
- D. Finished members shall conform to the lines, angles, and curves shown on the drawings and shall be free from distortions of any kind.
- E. All shearings shall be neat and accurate, with parts exposed to view neatly finished. Flame cutting is allowed only when performed utilizing a machine.
- F. All shop connections shall be welded unless otherwise indicated on the Drawings or specified herein. Bolts and welds shall conform to Section 05050, Metal Fastening. All fastenings shall be concealed where practicable.

3.02 INSTALLATION

- A. Assembly and installation of metal stairs shall be performed in strict accordance with manufacturer's recommendations.
- B. All miscellaneous metalwork shall be erected square, plumb and true, accurately fitted, adequately anchored in place, and set at proper elevations and positions.

- END OF SECTION -

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 05515 LADDERS

PART 1 – GENERAL

1.01 REQUIREMENT

A. The Contractor shall furnish all materials, labor, and equipment required to provide all ladders in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05010 Metal Materials
- B. Section 05500 Metal Fabrications
- C. Section 05520 Handrails and Railings

1.03 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

- A. Without limiting the generality of the Specifications, all work specified herein shall conform to the applicable requirements of the following documents.
 - 1. Florida Building Code (FBC)
 - 2. Aluminum Association Specifications for Aluminum Structures
 - 3. Occupational Safety and Health Administration (OSHA) Regulations

1.04 SUBMITTALS

- A. Submit the following in accordance with Section 01300 entitled "Submittals".
 - 1. Complete fabrication and erection drawings of all metalwork specified herein.
 - 2. Other submittals as required in accordance with Section 05500 entitled "Metal Fabrications".

PART 2 - PRODUCTS

2.01 METAL MATERIALS

A. Metal materials, fasteners and welds used for ladders shall conform to Section 05010 entitled "Metal Materials", unless noted otherwise.

2.02 VERTICAL LADDERS

- A. Ladders shall be furnished with all mounting brackets, baseplates, fasteners, and necessary appurtenances for a complete and rigid installation.
- B. All ladders shall be aluminum alloy 6061-T6 or 6063-T5 with a clear, anodized finish, Aluminum Association M12C22A41, unless noted otherwise.

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- C. All ladders shall conform to dimensions indicated on the Drawings and shall comply with OSHA requirements.
- D. Side rails shall be 2-1/2 inch x 3/8 inch runners.
- E. Rungs shall be solid serrated 3/4-inch diameter, minimum.
- F. All exposed connections shall be welded and ground smooth.
- G. All fixed ladders terminating below a roof, floor or wall shall be provided with Bilco Model 2 Ladder Up Safety Posts, or equal. The safety post system components shall be suitable for service in a corrosive environment. The safety posts shall be manufactured of high strength, hot dip galvanized steel with telescoping tubular sections that lock automatically when fully extended. Upward and downward movement shall be controlled by a stainless steel spring balancing mechanism. The safety posts shall be completely assembled with fasteners for securing to the ladder rungs in accordance with the manufacturer's recommendations.

2.03 SAFETY CAGE

- A. For ladders exceeding twenty four feet in height, provide a safety cage in accordance with OSHA requirements.
- B. Safety cages shall be fabricated of 1/4-inch aluminum plates designed to meet OSHA requirements.
- C. An operable access door with padlock shall be provided for all safety cages.

2.04 FALL PREVENTION SYSTEM

- A. Ladders with an uninterrupted length exceeding 24 ft shall be installed with a fall prevention system, unless indicated otherwise on the drawings.
- B. Fall prevention system shall comply with OSHA requirements.
- C. Fall prevention system shall include all necessary components to provide a fully operational system, including one full body safety harness with a 310 lb. weight capacity for each fall prevention system. System shall have a fall locking device, impact attenuator, and rail system. Rail extension with dismounting system, which allows detachment from the system while not standing on the ladder, shall be provided for ladders accessed thru hatch openings. All components shall be stainless steel with a non-metallic cable guide.
- D. Fall Prevention Systems shall be RTC 2000 Climb-Rite System, Sellstrom Manufacturing Company, or Saf-T-Climb Fall Prevention System, Norton by Honeywell.

PART 3 - EXECUTION

3.01 FABRICATION

- A. All measurements and dimensions shall be based on field conditions and shall be verified by the Contractor prior to fabrication. Such verification shall include coordination with adjoining work.
- B. All fabricated work shall be shop fitted together as much as practicable, and delivered to the field, complete and ready for erection.
- C. All work shall be fabricated and installed in a manner that will provide for expansion and contraction, prevent shearing of bolts, screws, and other fastenings, ensure rigidity, and provide a close fit of sections.
- D. Finished members shall conform to the lines, angles, and curves shown on the Drawings and shall be free from distortions of any kind.
- E. All shearings shall be neat and accurate, with parts exposed to view neatly finished. Flame cutting is allowed only when performed utilizing a machine.
- F. All shop connections shall be welded unless otherwise indicated on the Drawings or specified herein. All fastenings shall be concealed where practicable.
- G. Fabricated items shall be shop painted when specified in accordance with Section 09900 entitled "Painting".

3.02 INSTALLATION

- A. Assembly and installation of fabricated system components shall be performed in strict accordance with manufacturer's recommendations.
- B. All ladders shall be erected square, plumb and true, accurately fitted, adequately anchored in place, and set at proper elevations and positions.
- C. Metalwork shall be field painted when specified in accordance with Section 09900 entitled "Painting".

- END OF SECTION -

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 05520 HANDRAILS AND RAILINGS

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish, fabricate, and install handrails and railings and appurtenances, complete, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05010 Metal Materials
- B. Section 05500 Metal Fabrications
- C. Section 05510 Metal Stairs

1.03 SUBMITTALS

A. Shop drawings of all handrails and railings shall be submitted to the Engineer for review in accordance with Section 01300 entitled "Submittals."

PART 2 – PRODUCTS

2.01 ALUMINUM RAILING SYSTEM

- A. General: Where indicated on the Drawings, pipe handrailing shall be provided. Pipe handrailing shall be supplied as required by the Florida Building Code and OSHA whether indicated on the Drawings or not.
- B. Vertical pipe supports shall include cast aluminum base flange or side mount bracket with set screws as indicated on Drawings. Removable posts shall be sleeved. Cast aluminum base flanges and side mount brackets shall be as manufactured by Thompson Fabricating Inc., Hollaender Manufacturing Inc., or equal.
- C. Wall brackets for handrail shall be of designs indicated on the Drawings and shall be as manufactured by Mouitrie Manufacturing Company, J.G. Braun Company, Fulton Metal Products Company, or equal.
- D. All connections between vertical posts and horizontal railing or between sections of horizontal railings shall be shop welded continuous in as long of sections as practical. Tack welds shall not be accepted. All welds shall be water tight and ground smooth. Field assembly of welded sections may be made by mechanical fasteners. Location and type of field connections shall be subject to the Engineer's review. Weep holes shall be shop drilled in all vertical posts of external railing.
- E. Design Load: All components of the railings and the railing system shall be adequately designed to resist the design loads of the Florida Building Code. In no case shall the spacing of vertical pipe supports exceed five feet.

- F. Aluminum Railing: Railing Posts shall be nominal 2 inch nominal diameter, Schedule 80 (minimum) aluminum alloy 6061 T6. Horizontal railing shall be 1-1/2 inch nominal diameter, Schedule 40 (minimum) aluminum pipe sections. Stainless steel railing may be used in lieu of aluminum railing at the Contractor's option at no additional cost to the City.
- G. Kickplates: Kickplates shall be furnished and installed typically at the edges of all walkways and at other handrail installations. Kickplates shall be an extrusion that attaches to the posts with clamps that will allow for expansion and contraction between posts, must meet OSHA requirements, shall project 4 inches above walkway surface, shall be set ¼-inch above the walking surface, may not infringe on minimum required walkway width and must be of the same material as that of the handrail construction.
- H. Expansion joint splices shall be provided at 30 feet maximum spacing and at all expansion joints in the structure supporting the handrail. Material for the expansion joint shall be the same as railing material.
- I. Finish: Aluminum railings and posts shall be provided with a clear anodized finish (215 R1).

2.02 FASTENERS

A. Fasteners when required or specified shall be Type 316 stainless steel.

PART 3 - EXECUTION

3.01 EXAMINATION

- A. Verify that field conditions are acceptable and are ready to receive work.
- B. Beginning of installation means erector accepts existing conditions.

3.02 PREPARATION

- A. Clean and strip primed items to bare metals where site welding is required.
- B. Supply items required to be cast into concrete with setting templates, to appropriate sections.

3.03 INSTALLATION

- A. Install items plumb and level, accurately fitted, free from distortion or defects.
- B. Provide anchors and plates required for connecting railings to structure.
- C. Aluminum Railings: Aluminum railing fabrication shall be performed by craftsmen experienced in the fabrication of architectural metal work. Exposed surfaces shall be free from defects or other surface blemishes. Dimensions and conditions shall be verified in the field. All joints, junctions, miters and butting sections shall be precision fitted with no gaps occurring between sections, and with all surfaces flush and aligned. Electrolysis protection of materials shall be provided. All dissimilar materials shall be isolated.

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

3.04 EXPANSION BOLTS

A. Expansion bolts shall be spaced 10d apart and 6d edge distance (d=diameter of bolt). A safety factor of four shall be provided on expansion bolt pull out values published by the manufacturer.

3.05 ALUMINUM SURFACES

A. Aluminum surfaces in contact with concrete, grout or dissimilar metals shall be protected with a coat of bitumastic or other approved materials.

- END OF SECTION -

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 05531 GRATING, FLOOR PLATES, AND ACCESS HATCHES

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish, fabricate, and install gratings, floor plates, access hatches and appurtenances, complete, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 05010 Metal Materials
- B. Section 05035 Galvanizing
- C. Section 05050 Metal Fastening
- D. Painting and protective coating of metalwork and fabricated items shall, unless otherwise specified herein, be performed in accordance with the requirements of the Section entitled "Painting."

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. Specifications, codes and standards shall be as specified in Section 05010 entitled "Metal Materials" and as referred to herein.

1.04 SUBMITTALS

- A. Submit the following in accordance with the Section entitled "Submittals":
 - 1. Complete fabrication and erection drawings of all gratings, floor plates, access hatches and access doors specified herein.
 - 2. Other submittals as required in accordance with the Section entitled "Metal Fabrications."

PART 2 - PRODUCTS

2.01 METAL MATERIALS

A. Metal materials used for gratings, floor plates and hatches shall conform to Section 05010 entitled "Metal Materials," unless noted otherwise.

2.02 METAL FASTENING

A. All welds and fasteners used for gratings, floor plates and hatches shall conform to Section 05050 entitled "Metal Fastening," unless noted otherwise.

2.03 GRATING

- A. General: Grating, including support frames, fastenings, and all necessary appurtenances for a complete installation shall be furnished as indicated on the Drawings and specified herein.
 - 1. All exposed bearing ends of grating shall be enclosed in a perimeter band of the same dimensions and materials as the main bars, including ends at all cutouts.
 - 2. Grating shall be fabricated into easily removable sections and shall be fastened at each corner and as required with fasteners provided by the grating manufacturer. No section of grating shall weigh in excess of 50 lbs. unless noted otherwise. No fasteners shall be permitted to project above the walking surface.
 - 3. Gratings shall be designed for a loading of 150 psf unless a depth is required by the Drawings. When grating depth is not indicated on the drawings, minimum grating depth shall be 1 ½-inches and deflection shall not exceed L/240 or ¼-inch.
 - 4. All grating shall be furnished with holddowns.
 - 5. Grating installed in cast-in-place concrete shall be provided with embedded support frames on all perimeter and bearing edges. Support frames shall include anchor straps or headed studs at a maximum of 18-inches on-center, a minimum of two each side. Support frames shall be fabricated from the same material as the grating.

B. Aluminum Grating

- 1. Aluminum grating shall be of I-Bar type and shall consist of extruded bearing bars positioned and locked by crossbars. All supports, cross members, etc. shall be aluminum. Plank clips for grating hold downs or other required attachments shall be aluminum or stainless steel. Bolts shall be stainless steel. Provide embedded aluminum support frames for cast-in-place concrete installations.
- 2. Grating shall be "19-SI-4 I-Bar Swage Locked" by Alabama Metal Industries Corporation (AMICO), "IB" by Harsco Industrial IKG, "I-Bar 19SGI4", by Ohio Grating Inc., or "I-Bar" by Thompson Fabricating LLC.
- 3. Grating shall be provided with a mill finish.

C. Aluminum Plank Grating

- 1. Aluminum plank grating shall be un-punched, 6-inch wide extruded section panels, heavy duty type with 6 ribs and plain sides, welded together to form panels. Panel ends shall have an extruded aluminum end bar welded in place. All support members shall be aluminum. Plank clips for grating holddowns or other required attachments, shall be aluminum or stainless steel. Bolts shall be stainless steel. All planks shall be provided with embedded aluminum support frame for cast-in-place concrete.
- Removable sections shall be edge banded in sections and provided with stainless steel flush mounted lift handles with necessary plank reinforcing and hold down anchors.

- 3. Hinged sections shall be shop fabricated ready for field installation. Panels shall be edge banded with a continuous hinge, flush mounted lifting handles (1 section minimum), stainless steel bolts and hardware. Grating frame shall be provided with removable temporary braces to maintain the required opening width during casting. Provide necessary grating reinforcing for lift handles, hinge connections, hold down anchors, etc.
- 4. Plank grating shall be provided with a mill finish.
- 5. Aluminum plank grating shall be HD-P manufactured by Harsco Industrial IKG., Heavy Duty Series manufactured by Ohio Gratings, Inc., or Unpunched Duo-Grip Extruded Series manufactured by Alabama Metal Industries Corporation (AMICO).

D. Steel Grating

- 1. Steel grating shall be custom welded heavy duty steel grating per ANSI/NAMM MBG 532-000. Minimum bearing bar size shall be 2½-inch by ½-inch. All supports, cross members, etc. shall be galvanized steel. Plank clips for grating hold downs shall be stainless steel. Bolts shall be galvanized steel.
- All openings shall be banded.
- 3. Steel grating shall be galvanized according to the Section entitled "Galvanizing."
- 4. Main bearing bars shall conform to ASTM A36. Cross bars shall be flush with the top of the grating.
- 5. Grating span shall be 36 inches maximum and shall satisfy AASHTO loading for H-20 truck.
- 6. Grating shall be manufactured by IKG Borden Industries, Leeds, AL or equal.

2.04 CHECKERED PLATES

- A. Checkered plates shall be aluminum alloy 6061-T6, or galvanized steel as indicated on the Drawings. Aluminum checkered plates shall be provided in mill finish, except when otherwise indicated on the Drawings. Checkered plates shall be designed for a live load of 150 pounds per square foot of the gross projected area. The allowable deflection under the above loadings shall be L/240 but not more than ¼-inch. Minimum thickness shall be 3/8-inch, unless otherwise noted on the Drawings.
- B. Checkered plates shall be standard pattern non-slip of the thickness and sizes on the Drawings. Stiffener angles shall be provided as required to meet the load requirements specified above. All checkered plate sections shall be cut that no one section shall weigh more than 100 pounds.
- C. Flush type lifting handles and hinges and neoprene seals for airtight construction shall be provided where shown on the Drawings.
- D. At locations noted, neoprene gaskets shall be provided between floor plates and frames. Plates shall be screwed into frames when noted on the Drawings.

- E. Hinges, where indicated on the Drawings, shall be heavy-duty, cadmium plated bronze with stainless steel pins and fasteners.
- F. Removable Sections: Plates shall be fabricated in removable sections with weight not exceeding 60 pounds each with flush mounted handles and removable hold down stainless steel bolts.

2.05 ACCESS HATCHES

A. General

- Door opening sizes, number and direction of swing of door leaves, and locations shall be as shown on the Drawings. The Drawings show the clear opening requirements. Door leaves shall be 1/4 inch, minimum, diamond pattern plate with an approved raised pattern, non-skid surface. Plate shall be stiffened as required to maintain allowable stress and deflection requirements. Stiffeners shall consist of angles or bars welded to the bottom of plate
- 2. All doors shall be aluminum (mill finish) unless otherwise noted. All doors in locations subject to direct vehicular traffic shall be galvanized steel designed for H-20 live loads.
- 3. Openings larger than 42 inches in either direction shall have double leaf doors.
- 4. Doors shall be designed for flush mounting and for easy opening from both inside and outside.
- 5. All doors shall be provided with an automatic hold-open arm with release handle.
- 6. Double leaf doors shall be provided with Type 316 stainless steel safety chains to go across the open sides of the door, when in the open position. Brackets shall be provided on the underside of the doors to hold the safety bars when not in use.
- 7. All hardware, including but not limited to, all parts of the latch and lifting mechanism assemblies, hold open arms and guides, brackets, hinges, springs, pins, and fasteners shall be Type 316 stainless steel.
- 8. All doors shall be watertight with a continuous gasket. All single door applications shall include a continuous EPDM odor reduction gasket.
- 9. Cylinder locks with keyway protected by a cover plug shall be provided with all hatches.
- 10. Door leafs shall be 1/4-inch aluminum diamond plate, minimum, stiffened and designed for H-20 live loads at areas that could receive traffic wheel loads.
- 11. Door frames shall be trough-type or angle-type as indicated on the Drawings and equipped with a built-in neoprene cushion. On trough-type frames, the drainpipe shall be provided by the Contractor and shall extend to the nearest point of discharge acceptable to the Engineer.

- 12. Exterior doors shall be Type "J-AL" or "JD-AL", by Bilco Company, Type "W1S" or "W2S" by Halliday Products Inc., Type "TPS" or "TPD", by U.S.F. Fabrication Inc., Type "THG" or "THG-D", by Thompson Fabricating LLC., or equal.
- 13. Interior doors shall be Type "K" or "KD", by Bilco Company, Type "S1S" or "S2S" by Halliday Products Inc., Type "APS300" or "APD300", by U.S.F. Fabrication Inc., Type "TH" or "TH-D", by Thompson Fabricating LLC., or equal.
- 14. Doors rated for H-20 traffic loading shall be "JAL-HD" or "JDAL-HD" by the Bilco Company, Type "H1W" or "H2W" by Halliday Products, Inc.
- 15. Hatches shall be guaranteed against defects for a period of five years.

B. Roof Access Hatches

- 1. Roof access hatches shall be designed for a 50 psf live load minimum, unless noted otherwise
- 2. Roof access hatches for service stairs shall be Bilco Type L Roof Scuttles.
- 3. Roof access hatches for ladder access shall be Bilco Type S or SS Roof Scuttles.
- 4. Roof access hatches shall be provided with curb and integral cap flashing.

C. Equipment Access Hatches

1. Equipment access hatches shall be Bilco Type D or equal. Equipment access hatches shall be provided with curb and integral cap flashing.

2.06 FIXED LADDERS

- A. Where the Contract Documents indicate fixed ladders are required under access hatches, they shall be provided with "LadderUp, Model LU-4" by Bilco Company, "L1E Ladder Extension" by Halliday Products Inc., or "Ladder Climb-out Device" by Thompson Fabricating.
- B. The safety posts shall be manufactured of the same material as the access door with telescoping tubular sections that lock automatically when fully extended.
- C. Upward and downward movement shall be controlled by a stainless steel balancing mechanism.
- D. Safety posts shall be assembled in strict accordance with manufacturer's recommendations.

2.07 FALL THROUGH PREVENTION SYSTEM

A. All access hatches and access doors covering openings measuring 12 inches or more in its least dimension through which persons may fall shall be equipped with a fall through prevention system, except where noted on the Contract Drawings. Access hatches and access doors shall be provided with a permanent installed fall through prevention grate system that provides continuous safety assurance in both its closed and open positions.

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

The grate system shall be made with 6061-T6 aluminum or FRP and be designed for a 300 psf minimum live load, unless noted otherwise.

PART 3 - EXECUTION

3.01 FABRICATION

- A. All measurements and dimensions shall be based on field conditions and shall be verified by the Contractor prior to fabrication. Such verification shall include coordination with adjoining work. Fabrication shall begin only after such field measurements.
- B. All fabricated work shall be shop fitted together as much as practicable and delivered to the field, complete and ready for erection, unless sections have to be removable. All miscellaneous items such as stiffeners, fillets, connections, brackets, and other details necessary for a complete installation shall be provided.
- C. All work shall be fabricated and installed in a manner that will provide for expansion and contraction, prevent shearing of bolts, screws, and other fastenings, ensure rigidity, and provide a close fit of sections.
- D. Finished members shall conform to the lines, angles, and curves shown on the Drawings and be free from distortions of any kind.
- E. All shearings shall be neat and accurate, with parts exposed to view neatly finished. Flame cutting is allowed only when performed utilizing a machine.
- F. All shop connections shall be welded unless otherwise indicated on the Drawings or specified herein. Bolts and welds shall conform to the Section entitled "Metal Fastening." All fastenings shall be concealed where practicable.

3.02 INSTALLATION

- A. Assembly and installation of fabricate system components shall be performed in strict accordance with manufacturer's recommendations.
- B. All gratings, access hatches, and access doors shall be erected square, plumb and true, accurately fitted, adequately anchored in place and set at proper elevations and positions.

- END OF SECTION -

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 05540 CASTINGS

PART 1 - GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all materials, labor, and equipment required to provide all castings in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 03480 Precast Concrete Manholes, Handholes and Vaults
- B. Section 05010 Metal Materials

1.03 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

- A. Without limiting the generality of the other requirements of the specifications, all work herein shall conform to the applicable requirements of the following documents. All referenced specifications, codes, and standards refer to the most current issue available at the time of Bid.
 - 1. Florida Building Code (FBC)

1.04 SUBMITTALS

- A. Submit the following in accordance with Section 01300 Submittals.
 - 1. Complete fabrication and erection drawings of all castings specified herein.
 - 2. Other submittals as required in accordance with Section 05010 Metal Materials, and Section 05050 Metal Fastening.

PART 2 - PRODUCTS

2.01 METAL MATERIALS

A. Metal materials used for castings shall conform to Section 05010 - Metal Materials, unless noted otherwise.

2.02 METAL FASTENING

A. All welds and fasteners used for castings shall conform to Section 05050 – Metal Fastening, unless noted otherwise.

2.03 IRON CASTINGS

- A. General Iron Castings shall include, but not be limited to frames, covers, and grates for trench drains, catch basins, and inlets; and stop log grooves.
 - 1. Castings shall be of gray iron of uniform quality, free from defects, smooth and well cleaned by shotblasting.

- 2. Catalog numbers on the Drawings are provided only to show required types and configuration. All covers shall be cast with raised letters as designated on the Drawings.
- 3. Castings shall be as manufactured by Neenah Foundry Company, US Foundry, or equal.

B. Covers and Grates

- 1. Covers and grates shall be provided with matching frames. Cover shall fit flush with the surrounding finished surface. The cover shall not rock or rattle when loading is applied.
- 2. Round covers and frames shall have machined bearing surfaces.
- 3. Design loadings:
 - a. Where located within a structure, a minimum design loading of 300 psf shall be used, unless noted otherwise.
 - b. At all locations not within a structure, the design loading shall be a standard AASHTO H-20 truck loading, unless otherwise noted.
- C. Watertight gasketing, bolting, locking devices, patterns, lettering, pickholes, vents, or self-sealing features shall be as detailed on the Drawings.

PART 3 - EXECUTION

3.01 FABRICATION

- A. All measurements and dimensions shall be based on field conditions and shall be verified by the Contractor prior to fabrication. Such verification shall include coordination with adjoining work.
- B. All fabricated work shall be shop fitted together as much as practicable, and delivered to the field, complete and ready for erection. All miscellaneous items such as stiffeners, fillets, connections, brackets, and other details necessary for a complete installation shall be provided.
- C. Finished members shall conform to the lines, angles, and curves shown on the Drawings and shall be free from distortions of any kind.

3.02 INSTALLATION

- A. Assembly and installation of fabricated system components shall be performed in strict accordance with manufacturer's recommendations.
- B. All castings shall be erected square, plumb and true, accurately fitted, adequately anchored in place, and set at proper elevations and positions.

- END OF SECTION -

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 07160 BITUMINOUS DAMPPROOFING

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. Prepare and prime surfaces to receive dampproofing.
- B. Apply bituminous dampproofing on exterior concrete wall surfaces below grade of new tanks, precast vaults and manhholes, and structures that enclose interior areas installed under this Contract, unless otherwise indicated to be coated in Specification 09900 Painting.
- C. Seal/caulk joints and protrusions through dampproofing.
- D. Place protective cover over applied dampproofing.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 03300 Cast-in-Place Concrete
- B. Section 03315 Grout
- C. Section 09900 Painting

1.03 REFERENCE STANDARDS

- A. ASTM D41 Primer for Use with Asphalt in Dampproofing and Waterproofing.
- B. ASTM D449 Asphalt for Dampproofing and Waterproofing.
- C. ASTM D1668 Glass Fiber Fabric Impregnated with Bitumen.

1.04 SUBMITTALS

- A. Submit product data in accordance with Section 01300 Submittals.
- B. Submit manufacturer's product literature, specification data sheets and instructions for application recommendations.

1.05 DELIVERY, STORAGE AND HANDLING

- A. Deliver materials in manufacturer's unopened containers identified with name, brand, type, grade, class and all other qualifying information.
- B. Store materials in dry location to prevent damage or intrusion of foreign matter. Remove damaged materials from the job site.

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

- A. Subject with compliance with the Specifications provide products from one of the following:
 - 1. Karnak Corp.
 - 2. W.R. Meadows
 - 3. Koch Materials Co.
 - 4. BASF Master Builders Solutions

2.02 MATERIALS

- A. <u>Asphalt Primer</u>: Type recommended by manufacturer.
- B. <u>Dampproofing</u>: Non-asbestos, fibrated mastic conforming to ASTM D-1227, Type II, Class 1, compatible with cavity wall insulation.

PART 3 - EXECUTION

3.01 DELIVERY, STORAGE AND HANDLING

- A. Deliver materials in manufacturer's unopened containers identified with name, brand, type, grade, class and all other qualifying information.
- B. Store materials in dry location to prevent damage or intrusion of foreign matter. Remove damaged materials from the job site.

3.02 SURFACE PREPARATION

- A. Ensure surfaces are firm, dry and free from loose particles, cracks, pits, rough projections, grease, oil and other foreign matter detrimental to adhesion and monolithic application of dampproofing.
- B. Remove loose particles and foreign matter with scraper, wire brush or other effective means. Remove grease or oil with safety solvent, effective alkaline cleaner or detergent. If safety solvents are used, follow with an application of alkaline cleaner or detergent scrub surfaces clean with water.

3.03 APPLICATION

- A. Prime surfaces with manufacturers recommended primer. Apply dampproofing at the rate of 6 gallons per 100 square feet.
- B. Apply dampproofing to substrates to provide a complete moisture resistant coating.
- C. Each coat shall be color coded with red as the base coat and black as the top coat.

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

3.04 PROTECTION

- A. Protect building from damage resulting from spillage, dripping and dropping of materials. Repair work damages during dampproofing operations.
- B. Take precautions against fire and other hazards during delivery, storage and installation of flammable materials. Comply with local ordinances and fire regulations in the installation of hazardous materials.

3.05 CLEANING

A. Clean adjacent materials and finishes which have been soiled.

- END OF SECTION -

SECTION 07920 SEALANTS AND CAULKING

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall provide sealant and caulking work required for a complete installation as is indicated on the Drawings and specified herein. The required applications of sealants and caulking include, but are not necessarily limited to, the following general locations:
 - 1. Masonry joints, exterior and interior.
 - 2. Joints at penetrations of walls, decks by piping, doors, windows, louvers and other services and equipment.
 - 3. Joints between items of equipment and other construction.
 - 4. Joints in concrete.

1.02 SUBMITTALS

- A. Submit shop drawings and color samples of sealant for review in accordance with the Section entitled "Submittals".
- B. Submit a two year guarantee on sealant type caulking work against joint failure. Joint failure is defined as leaks of air or water; evidence of loss of cohesion; fading of sealant material; migration of sealant; evidence of loss of adhesion between sealant and joint edge.

1.03 ACCEPTABLE MANUFACTURERS

A. The following list of manufacturer products are acceptable for this Section, subject to conformance with the specified requirements: Tremco, Thiokol, Dymoric or equal.

PART 2 - PRODUCTS

2.01 MATERIALS

A. Primer: Where required by sealant manufacturer, the primer shall be a compound designed to insure the adhesion of sealant. Material shall be provided by the sealant manufacturer and shall be selected for compatibility with substrate.

B. Sealant

1. Type 1: Multi-component, non-sag, low-modulus polyurethane rubber sealant meeting ASTM C-920, Type M, Grade NS, Class 25, use NT, M, A, and O. Capable of withstanding 50% in extension or compression such as Sikaflex-2C NS/SL, Sika Corporation, or approved equal.

- 2. <u>Type 2</u>: Single component polyurethane sealant meeting ASTM C-920, Type S, Grade NS, Class 25, Use NT, M, A, and O. Capable of withstanding 25% in extension or compression such as Sikaflex 1A by Sika Corporation or approved equal.
- 3. Type 3: Single component, low-modulus moisture curing silicone meeting ASTM C 920, Type S, Grade NS, Class 25, Use NT, M, G, and A. Capable of withstanding 50% extension and compression. Pecora 890 by Pecora Corporation, or approved equal.
- 4. <u>Type 4</u>: Single component, mildew resistant, moisture-curing silicone meeting ASTM C-920, Type S, Grade NS, Class 25, Use NT, M, G, and A. Pecora 898 by Pecora Corporation, or approved equal.
- 5. <u>Type 5</u>: Single component, acrylic latex meeting ASTM C-834. AC-20+ Silicone by Pecora Corporation, or approved equal.
- 6. <u>Type 6</u>: High grade butyl sealant meeting Federal Specification TT-S-00-1657. BC-158 by Pecora Corporation or approved equal.
- 7. <u>Type 7</u>: Multi-component chemical resistant polysulfide sealant conforming to ASTM C-920, Type M, Grade NS, Class 25 such as Sonolastic Two Part by BASF Construction Chemicals, or approved equal.
- 8. <u>Type 8</u>: Non-sag, Multi Component, traffic grade polyurethane sealant meeting ASTM C920, Type 19, Grate NS, Class 25, use T, M, A, and O. DynaTread by Pecora Corporation or approved equal.
- C. Joint Backing shall be closed cell foam. Material shall be nonreactive with caulking materials and non-oily. Minimum density shall be 3.24 pcf. Use no asphalt or bitumenimpregnated fiber with sealants.
- D. Joint cleaner shall be as recommended by sealant or caulking compound manufacturer.
- E. Joint Primer shall be as recommended by sealant manufacturer.
- F. Bond Breaker tape shall be either polyethylene or plastic as recommended by the sealant manufacturer.
- G. Color: Where manufacturer's standard colors do not closely match materials being sealed, provide a custom color.

PART 3 - EXECUTION

3.01 GENERAL

A. Comply with sealant manufacturer's printed instructions except where more stringent requirements are shown or specified and except where manufacturer's technical representative directs otherwise.

3.02 SHIPPING, HANDLING AND STORAGE

- A. Store and handle materials so as to prevent the inclusion of foreign matter or the damage of materials by water or breakage. Procure and store in original containers until ready for use. Material showing evidence of damage will be rejected.
- B. Store and handle materials so as to prevent the inclusion of foreign matter or the damage of materials by water or breakage. Procure and store in original containers until ready for use. Material showing evidence of damage shall be rejected.

3.03 INSTALLATION

- A. Employ only proven installation techniques, which will insure that sealants will be deposited in uniform, continuous ribbons without gaps or air pockets, with complete "wetting" of the joint bond surface equally on opposite sides. Except as otherwise indicated, the Contractor shall fill the sealant rabbet to a concave surface, slightly below adjoining surfaces. Where horizontal joints are between a horizontal surface and a vertical surface, fill joint to form a slight cove, so that joint will not trap moisture and dirt.
- B. Install sealants to depths as specified, or if not, as recommended by the sealant manufacturer and as follows:
 - 1. Moving Joints: For normal moving joints sealed with elastomeric sealants but not subject to traffic, fill joints to a depth equal to 50% of joint width, but not more than 1/2-inch deep or less than 1/4-inch deep.
 - 2. Sealed Joints: For joints sealed with non-elastomeric sealants and caulking compounds, fill joints to a depth in the range of 75% to 125% of joint width.
 - 3. Thresholds: Set thresholds in full bed of caulking compound; remove excess materials.

3.04 SCHEDULE

Schedule of Sealants

Application	Sealant	Color
Vertical and horizontal expansion joints and other locations for concrete seawall cap.	Type 1	To closely match adjacent surfaces and as selected by the City.
Vertical and horizontal joints bordered on both sides by concrete, masonry, precast concrete, EIFS, or other porous building material.	Type 2	To closely match adjacent surfaces or mortar and as selected by the City.
Vertical and horizontal joints bordered on both sides by painted metals, anodized aluminum, mill finished aluminum, PVC, glass or other non-porous building material.	Type 3	To closely match adjacent surfaces and as selected by the City.
Masonry expansion and control joints less than 11/4" wide.	Type 2	To closely match adjacent surfaces and as selected by the City.

Application	Sealant	Color
Masonry expansion and control joints equal or greater than 11/4 inches wide and not to exceed 2".	Type 1	To closely match adjacent surfaces and as selected by the City.
Interior – wood trim and finish joints.	Type 5	Color to be selected by City
Sanitary areas, joints in ceramic tile, around plumbing fixtures, countertops, and back splashes. See Note 1.	Type 4	To closely match adjacent surfaces and as selected by the City.
Perimeter sealing of doors, windows, louvers, piping, ducts, and electrical conduit. See Note 2.	Type 2 OR Type 3	To closely match adjacent surfaces and as selected by the City.
Below thresholds.	Type 6	Manufacturer's standard
Submerged in liquids. See Note 4.	Type 1	Manufacturer's standard
Submerged in liquids with high concentration of chlorine (> 2 ppm).	Type 7	Manufacturer's standard
Horizontal Joints exposed to vehicular or pedestrian traffic.	Type 8	To closely match adjacent surfaces.
Other joints indicated on the drawings or customarily sealed but not listed.	Type recommended by manufacturer	To closely match adjacent surfaces and as selected by the City.

 $^{{\}it Note 1:} Sealant for \ Laboratory \ Countertop \ shall \ be \ as \ recommended \ by \ countertop \ manufacturer.$

3.05 PROTECTION OF ADJOINING SURFACES

A. Prime or seal the joint surfaces wherever shown or recommended by the sealant manufacturer. Do not allow primer/sealer to spill or migrate onto adjoining surfaces.

3.06 SEALANT BACKER ROD

A. Install sealant backer rod for liquid elastomeric sealants, except where shown to be omitted or recommended to be omitted by sealant manufacturer for the application shown.

3.07 BOND BREAKER

A. Install bond breaker tape wherever shown and wherever required by manufacturer's recommendations to insure that elastomeric sealants will perform properly.

Note 2:Provide UL approved sealants for penetrations thru fire-rated walls and as specified in Section 07270.

Note 3: Sealants which will come in contact with potable water shall meet the requirements of NSF 61.

Note 4: Where sealant will be immersed in liquid chemicals verify compatibility prior to installation of sealant.

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

3.08 SPILLAGE

A. Sealants or compounds shall not overflow or spill onto adjoining surfaces, or to migrate into the voids of adjoining surfaces. Masking tape or other precautionary devices shall be used to prevent staining of adjoining surfaces.

3.09 CURING

A. Sealants and caulking compounds shall be cured in compliance with manufacturer's instructions and recommendations, to obtain high early bond strength, internal cohesive strength, and surface durability.

3.10 CLEANING

A. Excess and spillage of compounds shall be promptly removed as the work progresses. Adjoining surfaces shall be cleaned by whatever means may be necessary to eliminate evidence of spillage. Do not damage the adjoining surfaces or finishes.

- END OF SECTION -

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 09900 PAINTING

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all labor, tools, materials, supervision and equipment necessary to do all the work specified herein and as required for a complete installation, including surface preparation, priming and painting of Contractor furnished equipment, materials, and structures.

B. Section includes:

- 1. Paint Materials
- 2. Shop Painting
- 3. Field Painting
 - a. Surface Preparation
 - b. Piping and Equipment Identification
 - c. Schedule of Colors
 - d. Work in Confined Spaces
 - e. OSHA Safety Colors

1.02 GENERAL INFORMATION AND DESCRIPTION

- A. The term "paint," as used herein, includes emulsions, enamels, paints, stains, varnishes, sealers, cement filler, cement epoxy fillers and other coatings, whether used as prime, intermediate, or finish coats.
- B. All paint for concrete and metal surfaces shall be especially adapted for use in and around water and wastewater treatment facilities and shall be applied in conformance with the manufacturer's published specifications.
- C. All paint for final coats shall be fume resistant, compounded with pigments suitable for exposure to sewage gases, especially to hydrogen sulfide and to carbon dioxide. Pigments shall be materials which do not tend to darken, discolor, or fade due to the action of sewage gases. If a paint manufacturer proposes use of paint which is not designated "fume resistant" in its literature, it shall furnish full information concerning the pigments used in this paint.
- D. Provide primers and intermediate coats produced by same manufacturer as finish coat. Use only thinners approved by paint manufacturer, and only within manufacturer's recommended limits.

- E. Coatings used in conjunction with potable water supply systems shall have U.S. Environmental Protection Agency (EPA) and FDA approval for use with potable water and shall not impart a taste or odor to the water.
- F. All building, facilities, structures, and appurtenances, as indicated on the Drawings and as specified herein, shall be painted with not less then one shop coat and two field coats, or one prime coat and two finish coats of the appropriate paint. Items to be painted include, but are not limited to, exterior and interior concrete, structural steel, miscellaneous metals, steel and aluminum doors and frames, concrete block, ductwork, sluice gates, operators, pipe fittings, valves, mechanical equipment, motors, conduit, and all other work which is obviously required to be painted unless otherwise specified.
- G. Baked on enamel finishes and items with standard shop finishes such as graphic panels, electrical equipment, toilet partitions, lockers, instrumentation, etc., shall not be field painted unless the finish is damaged during shipment or installation. Aluminum, stainless steel, fiberglass and bronze work shall not be painted unless color coding and marking is required or otherwise specified. A list of surfaces not to be coated is included in Article 1.09 of this Section.
- H. Ensure compatibility of total paint system for each substrate. Test shop primed equipment delivered to the site for compatibility with final paint system. Provide an acceptable barrier coat or totally remove shop applied paint system when incompatible with system specified, and repaint with specified paint system.
- I. The Contractor shall obtain all permits, licenses and inspections and shall comply with all laws, codes, ordinances, rules and regulations promulgated by authorities having jurisdiction which may bear on the work. This compliance will include Federal Public Law 91-596 more commonly known as the "Occupational Safety and Health Act of 1970".

1.03 REFERENCE SPECIFICATION, CODES AND STANDARDS

- A. Without limiting the generality of these specifications the Work shall conform to the applicable requirements of the following documents:
 - 1. SSPC The Society for Protective Coatings Standards

a.	SSPC-Vis 1	Pictorial Surface Preparation Standards for Painting Steel Structures
b.	SSPC-SP2	Hand Tool Cleaning
C.	SSPC-SP3	Power Tool Cleaning
d.	SSPC-SP5	(NACE No. White Metal Blast Cleaning
e.	SSPC-SP6	(NACE No. Commercial Blast Cleaning
f.	SSPC-SP10	(NACE No. Near-White Metal Blast
q.	SSPC-SP13	(NACE No. 6) Surface Preparation of Concrete

2. NACE - National Association of Corrosion Engineers

- 3. ASTM D1737 Test Method for Elongation of Attached Organic Coatings with Cylindrical Mandrel Apparatus
- 4. ASTM B117 Method of Salt Spray (Fog) Testing
- 5. ASTM D4060 Test Method for Abrasion Resistance of Organic Coating by the Taber Abraser
- 6. ASTM D3359 Method for Measuring Adhesion by Tape Test

1.04 MANUFACTURERS

A. All painting materials shall be as manufactured by Tnemec, Carboline, Sherwin Williams, or equal.

1.05 SUBMITTALS

- A. The Contractor shall submit paint manufacturer's data sheets, application instructions, and samples of each finish and color to the Engineer for review, before any work is started in accordance with Section 01300 entitled, "Submittals."
- B. Submitted samples of each finish and color shall be prepared in a step-down format so that the area of each sample indicates the appearance of the various coats. For example, where a three-coat system is specified, the sample shall be divided into three areas indicating one coat only, two coats and all three coats. The Engineer will provide written authorization constituting a standard, as to color and finish only, for each coating system.
- C. The Contractor shall prepare a complete schedule of surfaces to be coated and shall identify the surface preparation and paint system proposed for use. The Paint Schedule shall be in conformance with Article 3.03 of this Section. The schedule shall contain the name of the paint manufacturer, and the name, address, email address and telephone number of the manufacturer's representative that will inspect the Work, and/or the certified NACE Level 2 (or higher) inspectors assigned by the manufacturer that will inspect the Work of the steel sheet pile coating. The schedule shall be submitted to the Engineer for review as soon as possible following the Notice to Proceed. The manufacturer shall submit a letter stating that the paint systems are proper for the exposure and service. If applicable, the manufacturer shall recommend improvements to the paint system specified, specific to the products being furnished.
- D. Certifications of NACE Level 2 (or higher) inspectors (for seawall steel sheet pile coating).
- E. For the seawall steel sheet pile coating, submit a coating repair plan procedure provided by the paint manufacturer. The repair plan procedure shall consist of surface preparation and a compatible painting system equal to or better than the original painting system that will be applied in the field. Submit the corresponding paint manufacturer's data sheets and application instructions.
- F. Name and detailed qualifications of the protective coating applicator or subcontractor. Qualifications shall include, but not be limited to, five (5) project references which show that the painting applicator or subcontractor has previous successful experience with the specified or comparable coating systems, a list of installations that are currently in service and documentation that applicator or subcontractor is currently a qualified applicator of

the proposed coatings by the manufacturer. Include the name, address and telephone number of the owner of each installation for which the coating applicator provided the coating.

1.06 SERVICES OF MANUFACTURER'S REPRESENTATIVE

- A. The Contractor shall purchase paint from an acceptable manufacturer. The manufacturer shall assign a representative to inspect the application of his product both in the shop and field. The Contractor, through the manufacturer's representative, shall submit his report to the Engineer at the completion of his Work identifying the products used and verifying that said products were properly applied and that the paint systems were proper for the exposure and service.
- B. For the seawall steel sheet pile, the Contractor shall purchase paint from an acceptable manufacturer. The manufacturer shall assign a certified NACE Level 2 (or higher) inspector, to provide continuous inspection of the application of the products and to provide an inspection report of all elements painted. Certification of all NACE Level 2 (or higher) inspectors shall be submitted for review prior to surface preparation and painting. The inspection report shall be submitted at the completion of painting. The report shall reference each structural element, identify the products used and verify they were applied in conformance with the contract documents.
- C. Services shall also include, but not be limited to, inspecting prior coatings of paint, determination of best means of surface preparation, inspection of complete work, and reinspection of painted work to be performed six months after the job is completed.

1.07 MANUFACTURER'S INSTRUCTIONS

- A. The manufacturer's published instructions for use as a guide in specifying and applying the manufacturers proposed paint shall be submitted to the Engineer. Paint shall not be delivered to the job before acceptance of the manufacturer's instructions is given by the Engineer.
- B. A manufacturer's paint will not be considered for use unless that manufacturer's published instructions meets the following requirements:
 - The instructions must have been written and published by the manufacturer for the purpose and with the intent of giving complete instruction for the use and application of the proposed paint in the locality and for the conditions for which the paint is specified or shown to be applied under this Contract.
 - 2. All limitations, precautions, and requirements that may adversely affect the paint; that may cause unsatisfactory results after the painting application; or that may cause the paint not to serve the purpose for which it was intended; that is, to protect the covered material from corrosion, shall be clearly and completely stated in the instructions. These limitations and requirements shall, if they exist, include, but not be limited to the following:
 - a. Methods of application
 - b. Number of coats

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- Thickness of each coat
- d. Total thickness
- e. Drying time of each coat, including primer
- f. Primer required to be used
- Primers not permitted
- h. Use of a primer
- i. Thinner and use of thinner
- Temperature and relative humidity limitations during application and after İ. application
- Time allowed between coats k.
- I. Protection from sun
- m. Physical properties of paint including solids content and ingredient analysis
- Surface preparation n.
- Touch up requirements and limitations
- C. Concrete surfaces specified by the paint manufacturer to be acid etched shall be etched in accordance with the manufacturer's instructions. The surface shall then be thoroughly scrubbed with clean water, rinsed, and allowed to dry. The surface shall be tested with a moisture meter to determine when dry before coating. The surface shall also be tested for pH to determine the acid has been properly neutralized.

1.08 **QUALITY ASSURANCE**

09900

- A. The Contractor shall give the Engineer a minimum of three days advance notice of the start of any field surface preparation work of coating application work.
- B. All such Work shall be performed only in the presence of the Engineer, unless the Engineer has specifically allowed the performance of such Work in his absence.
- C. Review by the Engineer, or the waiver of review of any particular portion of the Work, shall not relieve the Contractor of his responsibility to perform the Work in accordance with these Specifications.
- D. The Contractor shall provide references of the coating applicator or subcontractor per article 1.05, E.

1.09 SAFETY AND HEALTH REQUIREMENTS

A. In accordance with requirements of OSHA Safety and Health Standards for Construction (29CFR1926) and the applicable requirements of regulatory agencies having jurisdiction, as well as manufacturer's printed instructions, appropriate technical bulletins, manuals,

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

and material safety data sheets, the Contractor shall provide and require use of personnel protective and safety equipment for persons working in or about the project site.

- B. Respirators shall be worn by persons engaged or assisting in spray painting. The Contractor shall provide ventilating equipment and all necessary safety equipment for the protection of the workmen and the work.
- C. All paint shall comply with all requirements of the Air Pollution Regulatory Acts concerning the application and formulation of paints and coatings for an area in which the paints are applied. Specifically, paints shall be reformulated as required to meet the local, State and Federal requirements.

1.10 SURFACES NOT TO BE COATED

- A. The following items shall not be coated unless otherwise noted:
 - 1. Encased piping or conduit.
 - 2. Stainless steel work.
 - 3. Clear PVC secondary containment piping.
 - 4. Galvanized checkered plate.
 - 5. Aluminum handrails, walkways, windows, louvers, grating and checkered plate.
 - 6. Flexible couplings, lubricated bearing surfaces and insulation.
 - 7. Packing glands and other adjustable parts of mechanical equipment.
 - 8. Finish hardware.
 - 9. Steel encased in concrete or masonry (except for seawall).
 - 10. Plastic switch plates and receptacle plates.
 - 11. Signs and nameplates.
 - 12. Any code-required labels, such as Underwriters' Laboratories and Factory Mutual, or any equipment identification, performance rating, name or nomenclature plates.
 - Any moving parts of operating units, mechanical and electrical parts, such as valve and damper operators, linkages, sensing devices, motor and fan shafts, unless otherwise indicated.

1.11 QUALITY WORKMANSHIP

A. The Contractor shall be responsible for the cleanliness of his painting operations and shall use covers and masking tape to protect work whenever such covering is necessary, or if so requested by the City. Any unwanted paint shall be carefully removed without damage to any finished paint or surface. If damage occurs, the entire surface, adjacent to and including the damaged area, shall be repainted without visible lapmarks and without additional cost to the City.

B. Painting found defective shall be scraped or sandblasted off and repainted as the City may direct. Before final acceptance of the work, damaged surfaces of paint shall be cleaned and repainted as directed by the City.

1.12 ADDITIONAL PAINT

A. At the end of the project, the Contractor shall turn over to the City a one gallon can (single component material) or small kit (multi component material – minimum of one gallon yield) of each type and color of paint, primer, thinner or other coating used in the field painting. The material shall be delivered in unopened, labeled cans as it comes from the factory. The manufacturer's literature describing the materials and giving directions for their use shall be furnished in three bound copies. A type-written inventory list shall be furnished at the time of delivery.

1.13 SHIPPING, HANDLING AND STORAGE

- A. All painting materials shall be brought to the job site in the original sealed labeled containers of the paint manufacturer and shall be subject to review by the Engineer. Where thinning is necessary, only the product of the manufacturer furnishing the paint shall be used. All such thinning shall be done strictly in accordance with the manufacturer's instructions, and with the full knowledge of the Engineer.
- B. Materials and their storage shall be in full compliance with the requirements of pertinent codes and fire regulations. Receptacles shall be placed outside buildings for paint gates and containers. Paint waste shall not be disposed of in plumbing fixtures, process drains or other plant systems or process units.

PART 2 – PRODUCTS

2.01 MATERIALS

A. Table 09900-1 depicts the coatings referenced in Article 3.03 of this Section entitled, "Paint Schedule". Table 09900-1 lists Tnemec, Carboline, and Sherwin-Williams products as a reference. Equivalent products by the Manufacturer's listed in Article 1.04 of this Section may be submitted for review.

TABLE 09900-1 PRODUCT LISTING

Ref.		Manufacturer's Reference			
No.	Description	Tnemec	Carboline	Sherwin-Williams	
101	Waterborne Polyamine Epoxy	151-1051 ElastoGrip FC	Sanitile 120	Loxon Conditioner	
102	Water Based Block Filler	1254 Epoxoblock WB	Sanitile 100	Corobond 300	

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

Ref.		Manufacturer's R		eference		
No.	Description	Tnemec	Carboline	Sherwin-Williams		
103	Modified Polyamidoamine Epoxy	135 – Color	Carboguard 890 – Color	Macropoxy 646		
104	Polyamidoamine Epoxy Primer	N69 – 1211	Carboguard 890 – 0500	Macropoxy 646		
105	Polyamidoamine Epoxy	N69 – Color	Carboguard 890 – Color	Macropoxy 646		
106	Coal Tar epoxy	46H-413 Hi-Build Tneme-Tar	Bitumastic 300M	Hi-Mil Sher Tar Epoxy		
107	Waterborne Acrylic Epoxy	113-Color	Sanitile 255 – Color	Hi-Bild WB Catalyzed Epoxy		
110	Aliphatic Acrylic Polyurethane	1095 – Color	Carbothane 133HB – Color	Acrolon Ultra		
111	Modified Waterborne Acrylate	156 - Envirocrete (Smooth Texture)	Flexxide Elastomer	Loxon XP		
114	Acrylic Concrete Primer	6 Tneme-Cryl	Sanitile 120	Loxon Conditioner		
115	Aromatic Urethane / Epoxy Zinc Rich	90-97 Tneme-Zinc	Carbozinc 859	Corothane I Galvapac		
116	Water repellent	668 Chemprobe Deck A Pell 40	Carbocrete Sealer WB	H&C SL-40		
118	Epoxy Modified Cementitious Mortar	218 MortarClad	Carboguard 510 SG	Corobond 300		
119	Cycloaliphatic Amine Epoxy	104 H.S. Epoxy	Carboguard 893 (Non-immersion) Phenoline 385	Tank Clad HS		
			(Immersion)			
121	Organic Zinc	90-97 Tneme-Zinc	Carbozinc 85	Zinc Clad 4100		

PART 3 - EXECUTION

3.01 SURFACE PREPARATION

A. General

- 1. Surfaces to be painted shall be clean and dry, and free of dust, rust, scale and all foreign matter. No solvent cleaning, power or hand tool cleaning shall be permitted unless acceptable to the Engineer or specified herein.
- 2. Threaded portions of valve and gate stems, machined surfaces which are limited for sliding contact, surfaces which are to be assembled against gaskets, surfaces or shafting on which sprockets are to fit, or which are intended to fit into bearings, machined surfaces of bronze trim on slide gates and similar surfaces shall be masked off to protect them from the sandblasting of adjacent surfaces. Cadmium-plated or galvanized items shall not be sandblasted unless hereinafter specified, except that cadmium-plated, zinc-plated, or sherardized fasteners used in assembly of equipment to the sandblasted shall be sandblasted in the same manner as the unprotected metal. All installed equipment, mechanical drives, and adjacent painted equipment shall be protected from sandblasting. Protection shall prevent any sand or dust from entering the mechanical drive units or equipment where damage could be caused.
- Hardware accessories, machined surfaces, plates, lighting fixtures, and similar items in place prior to cleaning and painting, and not intended to be painted, shall be protected or removed during painting operations and repositioned upon completion of painting operations.
- 4. Examine surfaces to be coated to determine that surfaces are suitable for specified surface preparation and painting. Report to Engineer surfaces found to be unsuitable in writing. Do not start surface preparation until unsuitable surfaces have been corrected. Starting surface preparation precludes subsequent claim that such surfaces were unsuitable for the specified surface preparation or painting.
- 5. Surface preparation shall be in accordance with specifications and manufacturer's recommendations. Provide additional surface preparation, and fill coats where manufacturer recommends additional surface preparation, in addition to requirements of specification.
- 6. Touch-up shop or field applied coatings damaged by surface preparation or any other activity, with the same shop or field applied coating; even to the extent of applying an entire coat when required to correct damage prior to application of the next coating. Touch up coats are in addition to the specified applied systems, and not considered a field coat.
- 7. Protect motors and other equipment during blasting operation to ensure blasting material is not blown into motors or other equipment. Inspect motors and other equipment after blasting operations and certify that no damage occurred, or where damage occurred, the proper remedial action was taken.

8. Sand from sandblasting shall be thoroughly removed, using a vacuum cleaner if necessary. No surface which has been sandblasted shall be painted until inspected by the Engineer.

B. Metal Surfaces

- 1. Except as otherwise provided, all preparation of metal surfaces shall be in accordance with Specifications SP-1 through SP-10 of the Society for Protective Coatings (SSPC). Where the Society for Protective Coatings Specifications are referred to in these Contract Documents, the corresponding Pictorial Surfaces Preparation Standard shall be used to define the minimum final surface conditions to be supplied. Grease and oil shall be removed and the surface prepared by hand tool cleaning, power tool cleaning or blast cleaning in accordance with the appropriate Specification SP-1 through SP-30.
- 2. Perform blast cleaning operations for metal when following conditions exist:
 - a. Moisture is not present on the surface.
 - b. Relative humidity is below 80%.
 - c. Ambient and surface temperatures are 5°F or greater than the dew point temperature.
 - d. Painting or drying of paint is not being performed in the area.
 - e. Equipment is in good operating condition.
 - f. Proper ventilation, illumination, and other safety procedures and equipment are being provided and followed.
- 3. Weld flux, weld spatter and excessive rust scale shall be removed by power tool cleaning as per SSPC-SP-3.
- 4. All ferrous metal surfaces not required to be galvanized shall be cleaned of all oil grease, dirt, rust and tight and loose mill scale by blasting in accordance with the following: SSPC-SP 5 White Metal Blast Cleaning and comply with the visual standard NACE No. 1, for shop prepared and shop primed metal to be submerged or in a corrosive environment, SSPC-SP10 Near White Metal Blast Cleaning, and comply with the visual standard NACE No. 2 for field prepared metal to be submerged or in a corrosive environment, SSPC-SP6 and comply with the visual standard NACE No. 3 for metal in all other locations. Steel sheet piles shall receive surface preparation in accordance with SSPC-SP 10 Near White Metal Blast Cleaning with the visual standard NACE No. 2 with a minimum angular anchor profile of 1.5 2.0 mils or other stringent recommendations from paint manufacturer. Pickling, complying with SSPC-SP 8, may be substituted for Near White Blast in areas as determined by the Engineer. Priming shall follow sandblasting before any evidence of corrosion occurs, before nightfall and before any moisture is on the surface.
- 5. Field surface preparation of small, isolated areas such as field welds, repair of scratches, abrasions or other marks to the shop prime or finish shall be cleaned by

power tools in accordance with SSPC-SP 3, or in difficult and otherwise inaccessible areas by hand cleaning in accordance with SSPC-SP 2 and spot primed.

- 6. All coated surfaces shall be cleaned prior to application of successive coats. All non ferrous metals not to be coated shall be cleaned. This cleaning shall be done in accordance with SSPC-SP 1, Solvent Cleaning.
- 7. All shop coated surfaces shall be protected from damage and corrosion before and after installation by treating damaged areas immediately upon detection. Abraded or corroded spots on shop coated surfaces shall be prepared in accordance with SSPC-SP 2, Hand Tool Cleaning and then touched up with the same materials as the shop coat.
- 8. All shop coated surfaces which are faded, discolored, or which require more than minor touch up, in the opinion of the Engineer, shall be repainted. Cut edges of galvanized sheets, electrical conduit, and metal pipe sleeves, not to be finish painted, shall be cleaned in accordance with SSPC-SP 1, Solvent Cleaning and primed with zinc dust zinc oxide metal primer.

C. Concrete Surfaces

- 1. Concrete surfaces are to be cured for at least 28 days prior to surface preparation, unless coatings are recommended for application over green concrete surfaces.
- 2. Test concrete for moisture content, pH and salts using test method recommended by the paint manufacturer. Do not begin surface preparation, or painting until moisture content is acceptable to manufacturer.
- 3. Non-submerged concrete and masonry surfaces to be painted shall be prepared by removing efflorescence, chalk, dust, dirt, grease, oil, form coating, tar and by roughening to remove glaze. All surfaces shall be repaired prior to commencement of the coating operation.
- 4. Concrete immersion surfaces that are to be coated shall be prepared in accordance to SSPC-SP13/NACE No. 6 to remove all laitance, curing compounds, hardeners, sealers, and other contaminants, and to provide a minimum surface profile. Refer to manufacturer's recommendation for specific coating being applied and adhere to ICRI Concrete Surface Preparation Profiles (CSP 1-10) when reviewing concrete surface preparation. Areas of concrete which contain bug holes or voids shall be filled with the manufacturer's approved filler material.

D. Exposed Pipe, Valves and Pumps

- Bituminous coated pipe shall not be used in exposed locations. Pipe which shall be exposed after project completion shall be primed in accordance with the requirements herein. Any bituminous coated ferrous pipe which is inadvertently installed in exposed locations shall be sandblasted to SSPC SP 5 White Metal before priming and painting.
- After installation and prior to finish painting, all exterior, exposed flanged joints shall
 have the gap between adjoining flanges and gaps between the pipe wall and
 threaded-on flanges sealed with a single component Thiokol caulking to prevent rust
 stains.

09900 11 CAM #25-0925
Exhibit 1D
Page 1120 of 2050

E. PVC Pipe Surfaces

1. All pipe surfaces shall be cleaned and lightly sanded before painting.

F. Existing Painted Surfaces

- 1. Totally remove existing paint when: surface is to be submerged in a severe environment, paint is less than 75% intact, brittle, eroded or has underfilm rusting.
- 2. Surfaces which are greater than 75% intact require removal of failed paints and then spot primed. Spot priming is in addition to coats specified.
- 3. Remove surface contamination such as oil, grease, loose paint, mill scale, dirt, foreign matter, rust, mold, mildew, mortar, efflorescence, and sealers.
- 4. Clean and dull glossy surfaces prior to painting in accordance with the manufacturer's recommendations.
- 5. Check existing paints for compatibility with new paint system. If incompatible, totally remove existing paint system or apply a barrier coat recommended by the paint manufacturer. Remove existing paints of undetermined origin. Prepare a test patch of approximately 3 square feet over existing paint. Allow test patch to dry thoroughly and test for adhesion. If proper adhesion is not achieved remove existing paint and repaint.

3.02 SHOP PAINTING

- A. All fabricated steel work and equipment shall receive at the factory at least one shop coat of prime paint compatible with the paint system required by these Specifications. The Contractor shall coordinate all shop priming to ensure compatibility with paint system specified. Surface preparation prior to shop painting shall be as specified herein. Finish coats may be applied in the shop if acceptable to the Engineer. All shop painted items shall be properly packaged and stored until they are incorporated in the Work. Any painted surfaces that are damaged during handling, transporting, storage or installation shall be cleaned, scraped, and patched before field painting begins so that Work shall be equal to the original painting received at the shop. Equipment or steel Work that is to be assembled on the site shall likewise receive a minimum of one shop coat of paint at the factory. Surfaces of exposed members that will be inaccessible after erection shall be prepared and painted before erection.
- B. The Contractor shall specify the shop paints to be applied when ordering equipment in order to assure compatibility of shop paints with field paints. The paints and surface preparation used for shop coating shall be identified on shop drawings submitted to the Engineer for review. Shop paint shop drawings will not be reviewed until the final project paint system has been submitted by the Contractor and reviewed by the Engineer.
- C. Shop finish coats may be the standard finish as ordinarily applied by the manufacturer if it can be demonstrated to the Engineer that the paint system is equal to and compatible with the paint system specified. However, all pumps, motors and other equipment shall receive at least one field applied finish coat after installation.

3.03 PAINT SCHEDULE

A. The Contractor shall adhere to this paint schedule, providing those paints named or equal. DFT shall mean the minimum dry film thickness per application measured in mils. Products are referenced by numbers listed in table 09900-1 in Article 2.01 of this Section entitled "Product Listing." The paint schedule identifies the minimum DFT required per coat. If the Contractor does not achieve the specified DFT range in a single coat, he shall provide additional coats as necessary at no additional cost to the City.

B. Steel Sheet Piling

- Steel sheet piling used for seawalls
 - a. Surface preparation per SSPC-SP 10 / NACE No. 2 Near White Metal Blast Cleaning with a minimum angular anchor profile of 1.5 2.0 mils or other stringent recommendations from paint manufacturer.
 - b. Apply organic zinc-rich primer to all surfaces of sheet piling.
 - c. Apply coal tar epoxy to all surfaces of sheet piling.

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First - 1 coat Second - 1 coat Finish - 1 coat	121 106 106	Organic Zinc-Rich Primer Coal Tar Epoxy Coal Tar Epoxy	3.0 - 3.5 8.0 - 12.0 8.0 - 12.0
		Min. Total	19.0 Mils

C. Metal Surfaces, Atmospheric (Exterior) Exposure

- Metal surfaces exposed to the atmosphere that do not come into contact with corrosive atmosphere including the following types of surfaces shall be painted as described below:
 - a. Pumps, motors, process equipment, machinery, etc.
 - b. Above ground piping, valves and pipe supports.
 - c. Miscellaneous steel shapes, angles, etc.
 - d. Exposed surfaces of conduit, ductwork, etc.
 - e. Exposed non-factory painted surfaces of electric panels, air conditioning units, etc.

Ferrous Metal

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First -1 coat	104	Polyamidoamine Epoxy Primer	3.0 - 5.0
Second - 1 coat (*)	105	Polyamidoamine Epoxy	2.0 - 3.0
Finish - 1 coat	110	Aliphatic Acrylic Urethane	<u>3.0 - 4.0</u>

Min. Total 10.0 Mils

(*) Broadcast 50 mesh silica sand while still wet over entire digester cover area.

Non-Ferrous Metal

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First - 1 coat Second - 1 coat	105 110	Polyamidoamine Epoxy Aliphatic Acrylic Urethane	2.0 - 3.0 3.0 - 4.0
		Min. Total	6.0 Mils

Galvanized

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
Spot Repair	115	Aromatic Urethane / Epoxy Zinc-Rich (spot)	2.5 - 3.5
First - 1 coat	105	Polyamidoamine Epoxy	2.0 - 3.0
Second - 1 coat	110	Aliphatic Acrylic Urethane	<u>3.0 - 4.0</u>
		Min. Total	6.0 Mils

D. Metal Surfaces, Submerged Exposure

1. Metal surfaces that are submerged shall be painted as described below:

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
Stripe coat	119	Cycloaliphatic Amine Epoxy	3.0 - 5.0
First – 1 coat	119	Cycloaliphatic Amine Epoxy	4.0 - 6.0
Finish - 1 coat	119	Cycloaliphatic Amine Epoxy	4.0 - 6.0
		Min. Total (excluding stripe coat)	10.0 Mils

E. Metal Surfaces, Interior Exposure

- 1. Interior metal surfaces (nonsubmerged) that do not come in contact with corrosive atmosphere including the following types of surfaces shall be painted as follows:
 - a. Pumps, motors, process equipment, machinery, etc.
 - b. Piping, valves and supports.
 - c. Miscellaneous steel shapes, angles, rails, etc.
 - d. Exposed surfaces of conduit, ductwork, etc.

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First - 1 coat	104	Polyamidoamine Epoxy Primer Polyamidoamine Epoxy	3.0 - 5.0
Finish - 1 coat	105		4.0 - 6.0

Min. Total 9.0 Mils

F. Ductile Iron Pipe, Exterior or Interior Exposure

1. Ductile iron pipe exterior or interior exposure shall receive the following types of paint:

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First - 1 coat Finish - 1 coat	105 110	Polyamidoamine Epoxy Aliphatic Acrylic Polyurethane	6.0 - 10.0 <u>3.0 - 5.0</u>
		Min. Total	12.0 Mils

G. PVC Pipes, Exterior or Interior Exposure

1. PVC pipes, valves, and accessories, shall receive the following types of paint:

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First - 1 coat Finish - 1 coat	105 110	Polyamidoamine Epoxy Aliphatic Acrylic Polyurethane	2.0 - 3.0 3.0 - 4.0
		Min. Total	6.0 Mils

H. New Concrete, Masonry and Stucco, Exterior Exposure

 The exterior above grade concrete, masonry, and stucco surfaces of all new structures shall receive the following:

Surface preparation: Surface shall be clean and dry without efflorescence, chalk, dust, dirt, grease, oil, form coating, and tar. Allow concrete to cure for 28 days.

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
Block Filler (*)	102	Water Based Epoxy Block Filler	100-150 SF/Gal
Primer (**)	114	Acrylic Concrete Primer	300-400 SF/Gal
First - 1 coat	111	Modified Waterborne Acrylate	4.0 - 6.0
Finish - 1 coat	111	Modified Waterborne Acrylate	<u>4.0 - 6.0</u>
		Min. Total	10.0 Mils

^(*) Block filler only to be used on new CMU

I. New Concrete and Masonry Surfaces, Interior Exposure

1. Interior exposed masonry and concrete wall and ceiling surfaces, including beam and column surfaces of all new non-water retaining structures shall be painted as follows:

Surface preparation: Surface shall be clean and dry without efflorescence, chalk, dust, dirt, grease, oil, form coating, and tar. Allow concrete to cure for 28 days.

^(**) Concrete primer for non-CMU applications

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
Block Filler (*)	102	Water Based Epoxy Block Filler	100-150 SF/Gal
Primer (**)	114	Acrylic Concrete Primer	300-400 SF/Gal
First - 1 coat Finish - 1 coat	105 105	Polyamidoamine Epoxy Polyamidoamine Epoxy	4.0 - 6.0 4.0 - 6.0
		Min. Total	10.0 Mils

^{*}Block Filler shall only be used on new masonry.

- J. Existing or New Concrete Surfaces, Submerged Exposure:
 - 1. Existing or new concrete surfaces submerged in stormwater, including but not limited to the following types of surfaces, shall be painted as described below:
 - a. Interior of wet wells
 - b. Interior of intake structures
 - c. Interior of effluent boxes

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First - 1 coat Finish - 1 coat	106 106	Epoxy, coal tar, thinned Epoxy, coal tar, (Hi-Build)	6.0 - 8.0 <u>14.0 - 20.0</u>
		Min. Total	20.0 Mils

K. Concrete Surfaces, Buried Exposure:

1. The exterior surfaces of cast-in-place concrete walls and precast concrete structures from the top of the footing up to six inches below finished grade shall be painted as follows:

<u>Application</u>	<u>No.</u>	<u>Description</u>	<u>DFT</u>
First - 1 coat Finish - 1 coat	106 106	Epoxy, coal tar, thinned Epoxy, coal tar, thinned	6.0 - 8.0 <u>14.0 - 20.0</u>
		Min. Total	20.0 Mils

3.04 PAINTING

A. Application: All paint shall be applied by experienced painters with brushes or other applicators acceptable to the Engineer.

^{**} Concrete primer for non-CMU applications

- 1. Paint shall be applied without runs, sags, thin spots, or unacceptable marks. Paints shall be applied at the rate specified by the manufacturer to achieve the minimum dry mil thickness required. Additional coats of paint shall be applied, if necessary, to obtain thickness specified.
- 2. Paint shall be applied with spraying equipment only on those surfaces approved by the Engineer. If the material has thickened or must be diluted for application by spray gun, each coat shall be built up to the same film thickness achieved with undiluted brushed on material. Where thinning is necessary, only the products of the particular manufacturer furnishing the paint shall be used; and all such thinning shall be done in strict accordance with the manufacturer's instructions, as well as with the full knowledge of the Engineer.
- 3. Surfaces not accessible to brushes or rollers may be painted by spray by dauber or sheepskins and paint mitt. If any of these methods is to be used, it shall be done in strict accordance with the manufacturer's instructions, as well as with the full knowledge of the Engineer.
- B. Drying Time: A minimum of twenty four hours drying time shall elapse between applications of any two coats of paint on a particular surface unless shorter time periods are a requirement of the manufacturer or specified herein. Longer drying times shall be required for abnormal conditions as defined by the manufacturer.
- C. Weather Restrictions: No painting whatsoever shall be accomplished in rainy or excessively damp weather when the relative humidity exceeds 85 percent, or when the general air temperature cannot be maintained at 50 degrees Fahrenheit or above throughout the entire drying period. No paint shall be applied when it is expected that the relative humidity will exceed 85 percent or that the air temperature will drop below 50 degrees Fahrenheit within 18 hours after the application of the paint.
 - Dew or moisture condensation should be anticipated; and if such conditions are prevalent, painting shall be delayed until midmorning to be certain the surfaces are dry. The day's painting shall be completed well in advance of the probable time of day when condensation will occur.

D. Inspection of Surfaces

- Surface preparation and every field coat of priming and finishing paint shall be inspected by the Engineer or his/her authorized representative before the succeeding coat is applied. The Contractor shall follow a system of tinting successive paint coats so that no two coats for a given surface are exactly the same color. Areas to receive black protective coatings shall in such cases be tick marked with white or actually gauged as to thickness when finished.
- Before application of the prime coat and each succeeding coat, any defects or deficiencies in the prime coat or succeeding coat shall be corrected by the Contractor before application of any subsequent coating.
- 3. Samples of surface preparation and of painting systems shall be furnished by the Contractor to be used as a standard throughout the job, unless omitted by the Engineer.

- 4. When any appreciable time has elapsed between coatings, previously coated areas shall be carefully inspected by the Engineer, and where, in his opinion, surfaces are damaged or contaminated, they shall be cleaned and recoated at the Contractor's expense. Recoating times of manufacturer's printed instructions shall be adhered to.
- 5. Coating thickness shall be verified by the use of a dry film thickness digital gauge. Gauge shall be Elcometer 456 or equal and shall be properly calibrated. Coating thickness on non-metal surfaces shall be verified by the use of an ultrasonic gauge. Ultrasonic gauge shall be Positector 200 or equal. Gauges shall include the entire range of coating thicknesses required in this section.
- 6. The Contractor shall provide free of charge to the Engineer two new digital dry film gauges and two wet film gauges to be used to inspect coating by Engineer and Contractor. One gauge may be used by Contractor and returned each day to the Engineer. Engineer will return gauges to Contractor at completion of job.
- 7. Coatings shall pass a holiday detector test.
- 8. Determination of Film Thickness: Randomly selected areas, each of at least 107.5 contiguous square feet, totaling at least 5% of the entire control area shall be tested. Within this area, at least 5 squares, each of 7.75 square inches, shall be randomly selected. Three readings shall be taken in each square, from which the mean film thickness shall be calculated. No more than 20 percent of the mean film thickness measurements shall be below the specified thickness. No single measurement shall be below 80 percent of the specified film thickness. Total dry film thickness greater than twice the specified film thickness shall not be acceptable. Areas where the measured dry film thickness exceeds twice that specified shall be completely redone unless otherwise approved by the Engineer. When measured dry film thickness is less than that specified additional coats shall be applied as required.
- Holiday Testing: Holiday test painted ferrous metal surfaces which will be submerged in water or other liquids, or surfaces which are enclosed in a vapor space in such structures. Mark areas which contain holidays. Repair or repaint in accordance with paint manufacturer's printed instructions and retest.
 - a. Dry Film Thickness Exceeding 20 Mils: For surfaces having a total dry film thickness exceeding 20 mils: Pulse-type holiday detector such as Tinker & Rasor Model AP-W, D.E. Stearns Co. Model 14/20, shall be used. The unit shall be adjusted to operate at the voltage required to cause a spark jump across an air gap equal to twice the specified coating thickness.
 - b. Dry Film Thickness of 20 Mils or Less: For surfaces having a total dry film thickness of 20 mils or less: Tinker & Rasor Model M1 non-destructive type holiday detector, K-D Bird Dog, shall be used. The unit shall operate at less than 75-volts. For thicknesses between 10 and 20 mils, a non-sudsing type wetting agent, such as Kodak Photo-Flow, shall be added to the water prior to wetting the detector sponge.

E. Special Areas

 All surfaces which are to be installed against concrete, masonry etc., and will not be accessible for field priming and/or painting shall be back primed and painted as

> CAM #25-0925 Exhibit 1D Page 1127 of 2050

specified herein, before erection. Anchor bolts shall be painted before the erection of equipment and then the accessible surfaces repainted when the equipment is painted.

F. Special attention shall be given to insure that edges, corners, crevices, welds and rivets receive a film thickness equivalent to that of the adjacent painted surfaces.

G. Safety

1. Respirators shall be worn by persons engaged or assisting in spray painting. The Contractor shall provide ventilating equipment and all necessary safety equipment for the protection of the workmen and the Work.

H. Quality Workmanship

1. The Contractor shall be responsible for the cleanliness of his painting operations and shall use covers and masking tape to protect the Work whenever such covering is necessary, or if so requested by the City. Any unwanted paint shall be carefully removed without damage to any finished paint or surface. If damage does occur, the entire surface, adjacent to and including the damaged area, shall be repainted without visible lap marks and without additional cost to the City.

I. Defective/Damaged Coating System

- Painting found defective shall be scraped or sandblasted off and repainted as the Engineer or his/her authorized representative may direct. Before final acceptance of the Work, damaged surfaces of paint shall be cleaned and repainted as directed by the Engineer or his/her representative.
- 2. If the coating system is determined to require repair/field touch up, the Contractor shall strictly adhere to the approved repair plan procedure per article 1.05, D. Contractor shall notify the Engineer prior to commencing any surface preparation and coating repair in order to verify the affected zone. Painting shall not be performed if adverse conditions, such as rain or rising seawater, are expected.
- J. Any pipe scheduled to be painted and having received a coating of a tar or asphalt compound shall be painted with two coats or "Intertol Tar Stop", "Tnemec Tar Bar" or equal before successive coats are applied in accordance with the paint schedule.

3.05 SCHEDULE OF COLORS

- A. All colors shall be as designated by the Engineer at the shop drawing review. The Contractor shall submit color samples including custom color choices as required to the Engineer as specified in Article 1.05 of this Section. The Contractor shall submit suitable samples of all colors and finishes for the surfaces to be painted, or on portable surfaces when required by the Engineer. The Engineer shall decide upon the choice of colors and other finishes when alternates exist. No variation shall be made in colors without the acceptance from the City. Color names and/or numbers shall be identified according to the appropriate color chart issued by the manufacturer of the particular product in question.
- B. All above ground water main piping shall be painted white with blue longitudinal striping.

PAINTING CAM #25-0925 Exhibit 1D Page 1128 of 2050

- C. All underground water main piping shall have continuous 4" blue longitudinal stripe.
- D. All above ground force main piping shall be painted green.

3.06 OSHA SAFETY COLORS

- A. Items listed in ANSI Z53.1-1971, Section 2.1 shall be painted ANSI Red. In general, these items shall include fire protection equipment and apparatus; wall mounted breathing apparatus, danger signs and locations; and stop bars, buttons or switches. In addition all hose valves and riser pipes, fire protection piping and sprinkler systems, and electrical stop switches shall be painted ANSI Red.
- B. Items listed in ANSI Z53.1-1971, Section 2.3 shall be painted ANSI Yellow. Yellow shall be the basic color for designating caution and for marking physical hazards such as striking against, stumbling, falling, tripping, and "caught in between". In addition, an 8-inch wide strip on the top and bottom tread of stairways shall be coated.

3.07 WORK IN CONFINED SPACES

- A. The Contractor shall provide and maintain safe working conditions for all employees. Fresh air shall be supplied continuously to confined spaces through the combined use of existing openings, forced draft fans, or by direct air supply to individual workers. Paint fumes shall be exhausted to the outside from the lowest level in the contained space.
- B. Electrical fan motors shall be explosion proof if in contact with fumes. No smoking or open fires will be permitted in, or near, confined spaces where painting is being done.

3.08 CLEANING

A. The Work area shall be at all times kept free from accumulation of waste material and rubbish caused by the Work. At the completion of the painting, all tools, equipment, scaffolding, surplus materials, and all rubbish around the Work areas shall be removed and the Work left broom clean unless otherwise specified.

- END OF SECTION -

09900

PAINTING CAM #25-0925 Exhibit 1D Page 1129 of 2050

SECTION 11000 EQUIPMENT GENERAL PROVISIONS

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish, install, test, and place in acceptable operation all mechanical equipment and all necessary accessories as specified herein, as shown on the Drawings, and as required for a complete and operable system.
- B. The mechanical equipment shall be provided complete with all accessories, special tools, spare parts, mountings, and other appurtenances as specified, and as may be required for a complete and operating installation.
- C. It is the intent of these Specifications that the Contractor shall provide the City complete and operational equipment/systems. To this end, it is the responsibility of the Contractor to coordinate all interfaces with related mechanical, structural, electrical, instrumentation and control work and to provide necessary ancillary items such as controls, wiring, etc., to make each piece of equipment operational as intended by the Specifications.
- D. The complete installation shall be free from excessive vibration, cavitation, noise, and oil or water leaks.
- E. The requirements of this section shall apply to equipment furnished under Divisions 11 and 15.

1.02 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. All equipment, materials, and installations shall conform to the requirements of the most recent editions with latest revisions, supplements, and amendments of the specifications, codes, and standards listed in the Section 01090 – Reference Standards.

1.03 PERFORMANCE AFFIDAVITS

- A. When required in the individual equipment Specifications, the Contractor shall submit manufacturer's Performance Affidavits for equipment to be furnished.
- B. By these affidavits, each manufacturer must certify to the Contractor and the City, jointly, that each manufacturer has examined the Contract Documents and that the equipment, apparatus, or process the manufacturer offers to furnish will meet in every way the performance requirements set forth or implied in the Contract Documents.
- C. The Contractor must transmit to the Engineer three (3) original copies of the affidavit given by the manufacturer or supplier along with the initial Shop Drawing submittals.
- D. The Performance Affidavit must be signed by an officer of the Basic Corporation, partnership, or company manufacturing the equipment and witnessed by a notary public.
- E. The Performance Affidavit shall have the following format:

Addressed to: (Contractor) and City of Fort Lauderdale

Reference: Stormwater Master Plan Modeling and Design Implementation

Project Name

Text: (Manufacturer's Name) has examined the Contract Documents and hereby

state that the (Product) meets in every way the performance requirements

set forth or implied in Section of the Contract Documents.

Signature: Corporate Officers shall be Vice President, or higher. (Unless statement

authorizing signature is attached.)

1.04 SHOP DRAWINGS

- A. Shop Drawings shall be submitted to the Engineer for all equipment in accordance with the Section 01300 Submittals and shall also include the following information:
 - 1. Performance characteristics and descriptive data.
 - 2. Detailed equipment dimensional drawings and setting plans.
 - 3. General lifting, erection, installation, and adjustment instructions, and recommendations.
 - 4. Complete information regarding location, type, size, and length of all field welds in accordance with "Standard Welding Symbols" AWS A2.0 of the American Welding Society. Special conditions shall be fully explained by notes and details.
 - 5. The total uncrated weight of the equipment plus the approximate weight of shipped materials. Support locations and loads that will be transmitted to bases and foundations. Exact size, placement, and embedment requirements of all anchor bolts.
 - 6. Details on materials of construction of all components including applicable ASTM designations.
 - 7. Information on bearing types and bearing life.
 - 8. Gear box design and performance criteria and AGMA service factor.
 - 9. Piping schematics.
 - 10. Motor data sheet indicating motor horsepower; enclosure type; voltage; insulation class; temperature rise and results of dielectric tests; service-rating; rotational speed; motor speed-torque relationship; efficiency and power factor at 1/2, 3/4 and full load; slip at full load; running, full load, and locked rotor current values; and safe running time-current curves. Refer to Specification D.
 - 11. Equipment and motor protective device details. Connection diagrams for motor and all protective devices.
 - 12. Equipment shop coating systems, interior and exterior.

- 13. Panel layout drawings, schematic wiring diagrams, and component product data sheets for control panels. Refer to Division 16 and Division 17.
- 14. A list of spare parts and special tools to be provided.
- 15. Any additional information required to show conformance with the equipment specifications.
- 16. Warranty documentation including statement of duration of warranty period and contact phone numbers and addresses for warranty issues.
- B. SHOP DRAWINGS ON ITEMS REQUIRING PERFORMANCE AFFIDAVITS WILL NOT BE REVIEWED UNTIL ACCEPTABLE PERFORMANCE AFFIDAVITS ARE RECEIVED.

1.05 OPERATION AND MAINTENANCE INSTRUCTION/MANUALS

A. Operation and Maintenance (O&M) manuals shall be submitted in accordance with the Section 01300 – Submittals.

1.06 GENERAL INFORMATION AND DESCRIPTION

- A. All parts of the equipment furnished shall, be designed and constructed for the maximum stresses occurring during fabrication, transportation, installation, testing, and all conditions of operation. All materials shall be new, and both quality and materials shall be entirely suitable for the service to which the units are to be subjected and shall conform to all applicable sections of these Specifications.
- B. All parts of duplicate equipment shall be interchangeable without modification. Manufacturer's design shall accommodate all the requirements of these Specifications.
- C. Equipment and appurtenances shall be designed in conformity with ASTM, ASME, AIEE, NEMA, and other generally accepted applicable standards.
- D. All bearings and moving parts shall be adequately protected by bushings or other approved means against wear, and provision shall be made for accessible lubrication by extending lubrication lines and fittings to approximately 30 inches above finished floor elevation.
- E. Details shall be designed for appearance as well as utility. Protruding members, joints, corners, gear covers, etc., shall be finished in appearance. All exposed welds on machinery shall be ground smooth and the corners of structural shapes shall be rounded or chamfered.
- F. Machinery parts shall conform within allowable tolerances to the dimensions shown on the working drawings.
- G. All machinery and equipment shall be safeguarded in accordance with the safety codes of the USA and the State in which the project is located.
- H. All rotating shafts, couplings, or other moving pieces of equipment shall be provided with suitable protective guards of sheet metal or wire mesh, neatly and rigidly supported.

Guards shall be removable as required to provide access for repairs.

- I. All equipment greater than 100 pounds shall have lifting lugs, eyebolts, etc., for ease of lifting, without damage or undue stress exerted on its components.
- J. All manufactured items provided under this Section shall be new, of current manufacture, and shall be the products of reputable manufacturers specializing in the manufacture of such products.

1.07 EQUIPMENT WARRANTIES

- A. Warranty requirements may be added to or modified in the individual equipment specifications.
 - 3. The equipment furnished under this Contract shall be guaranteed to be free from defects in quality, design and/or materials for a period of one (1) year unless otherwise specified in the individual equipment specifications. The period of such warranties shall start on the date the particular equipment is placed in use by the City with corresponding start-up certification provided by the manufacturer's technical representative as specified herein, provided that the equipment demonstrates satisfactory performance during the thirty day operational period after the equipment startup. If the equipment does not perform satisfactorily during the thirty-day operational period, the start of the warranty period will be delayed until the equipment demonstrates proper operation. The Equipment Supplier shall repair or replace without charge to the City any part of equipment which is defective or showing undue wear within the guarantee period, or replace the equipment with new equipment if the mechanical performance is unsatisfactory; furnishing all parts, materials, labor, etc., necessary to return the equipment to its specified performance level. Repairs made during the warranty period shall include any required re-balancing.
- C. The Contractor shall provide an equipment warranty logbook prepared specifically for this project and submit two (2) copies of the document to the Engineer prior to final payment. The equipment warranty logbook shall include a summary listing of all equipment warranties provided, date received, and start date and end date of warranty period. A copy of each equipment warranty and equipment start-up certification shall also be provided in the document.
- D. The Equipment Supplier shall guarantee to the City that all equipment offered under these specifications, or that any process resulting from the use of such equipment in the manner stated is not the subject of patent litigation, and that the equipment supplier has not knowingly offered equipment, the installation or use of which is likely to result in a patent controversy, in which the City as user is likely to be made the defendant.
- E. Where patent infringements are likely to occur, each Equipment Supplier shall submit, as a part of their bid, license arrangements between the Equipment Supplier, or the manufacturer of the equipment offered, and the patent City or the controller of the patent, which will permit the use in the specified manner of such mechanical equipment as the equipment supplier may be bidding.
- F. Each Equipment Supplier, by submitting their bid, agrees to hold and save the City and Engineer or its officers, agents, servants, and employees harmless from liability of any nature or kind, including cost and expenses for, or on account of, any patented or

unpatented invention, process, article, or appliance manufactured or used in the performance of the work under this contract, including the use of the same by the City.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. The materials covered by these Specifications are intended to be equipment of proven reliability, and as manufactured by reputable manufacturers having experience in the production of such equipment. The Contractor shall, upon request of the Engineer, furnish the names of not less than five successful installations of the manufacturer's equipment of the same size and model of that offered under this contract. The equipment furnished shall be designed, constructed, and installed in accordance with the industry accepted practices and shall operate satisfactorily when installed as shown on the Drawings and operated per manufacturer's recommendations.

2.02 ANCHORS AND SUPPORTS

- A. The Contractor shall furnish, install, and protect all necessary guides, bearing plates, anchor and attachment bolts, and all other appurtenances required for the installation of the devices included in the equipment specified. Working Drawings for installation shall be furnished by the equipment manufacturer, and suitable templates shall be used by the Contractor when required in the detailed equipment Specifications.
- B. Anchor bolts and fasteners shall be furnished in accordance with the Section 05050 Metal Fastening, and with the individual equipment Specifications. All anchor bolts shall be a minimum of 1/2-inch diameter. All anchor bolts, handrail bolts, washers, clips, clamps, and fasteners of any type shall be constructed of 316 stainless steel, unless otherwise specified in the individual equipment Specifications.
- C. The Contractor shall provide all concrete pads or pedestals required for equipment furnished. All concrete equipment pads shall be a minimum of 6 inches high, unless otherwise shown on the Drawings and shall be doweled.
- D. Pipe sleeves or other means of adjusting anchor bolts shall be provided where indicated or required. Equipment shall be leveled by first using sitting nuts on the anchor bolts, and then filling the space between the equipment base and concrete pedestal with non-shrink grout, unless alternate methods are recommended by the manufacturer and are acceptable to the Engineer (such as shim leveling pumps, or chemical grout). Non-shrink grout shall be as specified in the Section 03315 Grout.

2.03 STRUCTURAL STEEL

- A. Structural steel used for fabricating equipment shall conform to the requirements of Division 5, Metals.
- B. All materials shall conform to applicable provisions of the AISC Specifications for the design and fabrication of structural steel, and to pertinent ASTM Standard Specifications.

2.04 DISSIMILAR METALS

A. All dissimilar metals shall be properly isolated to the satisfaction of the Engineer.

2.05 GALVANIZING

A. Where required by the equipment specifications, galvanizing shall be performed in accordance with Division 5, Metals.

2.06 STANDARDIZATION OF GREASE FITTINGS

A. The grease fittings on all mechanical equipment shall be such that they can be serviced with a single type of grease gun. Fittings shall be "ZERK" type or dimensionally equal.

2.07 ELECTRICAL REQUIREMENTS

- A. All electrical equipment and appurtenances, including but not limited to motors, panels, conduit and wiring, etc., specified in the equipment specifications shall comply with the applicable requirements of the Division 16 specifications and the latest National Electric Code.
- B. Motors shall conform to the applicable requirements of Division 16.
- C. In the individual equipment specifications, specified motor horsepower is intended to be the minimum size motor to be provided. If a larger motor is required to meet the specified operating conditions and performance requirements, the Contractor shall furnish the larger sized motor and shall upgrade the electrical service (conduit, wires, starters, etc.) at no additional cost to the City.
- D. Where variable frequency drives (VFDs) are specified, the Contractor shall be responsible for coordinating between equipment supplier and VFD supplier to ensure a complete and operational system. VFDs shall be furnished under Division 16.
- E. Motor starters and controls shall be furnished and installed under Division 16 and Division 17 unless otherwise specified in the individual pump specifications.

2.08 ACCESSORIES, SPARE PARTS, AND SPECIAL TOOLS

- A. Spare parts for equipment shall be furnished where indicated in the equipment Specifications or where recommended by the equipment manufacturer.
- B. Spare parts shall be identical and interchangeable with original parts.
- C. The spare parts shall be packed in containers suitable for long term storage, bearing labels clearly designating the contents and the pieces of equipment for which they are intended.
- D. Painting requirements for spare parts shall be identical to those for original, installed parts. Where no painting or protective coating is specified, suitable provisions shall be made to protect against corrosion.
- E. Spare parts shall be delivered at the same time as the equipment to which they pertain. Spare parts shall be stored separately in a locked area, maintained by the Contractor, and shall be turned over to the City in a group prior to substantial completion. All of these materials shall be properly packed, labeled, and stored where directed by the City and

Engineer.

- F. The Contractor shall furnish all special tools necessary to operate, disassemble, service, repair, and adjust the equipment in accordance with the manufacturers operation and maintenance manual.
- G. The Contractor shall furnish a one year supply of all recommended lubricating oils and greases. The manufacturer shall submit a list of at least four manufacturer's standard lubricants which may be used interchangeably for each type of lubricant required. All of these materials shall be properly packed, labeled and stored where directed by the Engineer.

2.09 EQUIPMENT IDENTIFICATION

- A. All mechanical equipment shall be provided with a substantial stainless steel nameplate, mechanically fastened with stainless steel hardware in a conspicuous place, and clearly inscribed with the manufacturer's name, year of manufacture, serial number, and principal rating data.
- B. All equipment provided under Divisions 11 through 15 including motorized and manual gates and valves (aboveground and buried) shall also be identified as to the equipment name and equipment tag number by a suitable laminated plastic or stainless steel nameplate mechanically fastened with stainless steel hardware. Equipment names and equipment tag numbers shall match the names provided for the equipment as identified on the Drawings and in the Specifications, subject to Engineer review and acceptance. Equipment names and tag numbers not currently identified in the Drawings and Specifications shall be provided to the Contractor prior to the fabrication of the nameplates. Coordinate name and number with same on remotely located controls, control panel, and other related equipment. For buried valve applications, the valve name and number shall be included in the bronze disc embedded in the valve's concrete collar as identified on the Drawings.
- C. Nameplates shall not be painted over.

PART 3 - EXECUTION

3.01 SHOP TESTING

- A. All equipment shall be tested in the shop of the manufacturer in a manner which shall conclusively prove that its characteristics comply fully with the requirements of the Contract Documents and that it will operate in the manner specified or implied.
- B. No equipment shall be shipped to the project until the Engineer has been furnished a certified copy of test results and has notified the Contractor, in writing, that the results of such tests are acceptable.
- C. Five (5) certified copies of the manufacturer's actual test data and interpreted results thereof shall be forwarded to the Engineer for review.
- D. If required by the individual equipment Specifications, arrangements shall be made for the City/Engineer to witness performance tests in the manufacturer's shop. The Engineer

shall be notified a minimum of 10 working days before shop testing commences.

E. Shop testing of electric motors shall be in accordance with applicable requirements of Division 16.

3.02 STORAGE OF EQUIPMENT AND MATERIALS

- A. The Contractor shall store their equipment and materials at the job site in strict accordance with the manufacturer's recommendations and as directed by the City or Engineer, and in conformity to applicable statutes, ordinances, regulations, and rulings of the public authority having jurisdiction. Equipment and materials shall not be delivered to the site prior to 90 days in advance of the scheduled installation. Partial payment requests will not be processed for materials delivered prior to 90 days before installation or for materials that are not properly stored unless otherwise approved.
- B. Material or equipment stored on the job site is stored at the Contractor's risk. Any damage sustained of whatever nature shall be repaired to the Engineer's satisfaction at no expense to the City. Stored electrical equipment is to be protected from the elements and shall have space heaters energized.
- C. The Contractor shall not store unnecessary materials or equipment on the job site and shall take care to prevent any structure from being loaded with a weight which will endanger its security or the safety of persons.
- D. The Contractor shall observe all regulatory signs for loadings on structures, fire safety, and smoking areas.
- E. The Contractor shall not store materials or encroach upon private property without the written consent of the owner of such private property.

3.03 MANUFACTURER'S FIELD SERVICES

- A. The Contractor shall arrange for a qualified Technical Representative from each manufacturer or supplier of equipment who is regularly involved in the inspection, installation, start-up, troubleshooting, testing, maintenance, and operation of the specified equipment. Qualification of the Technical Representative shall be appropriate to the type of equipment furnished and subject to the approval of the Engineer and the City. Where equipment furnished has significant process complexity, furnish the services of engineering personnel knowledgeable in the process involved and the function of the equipment. When necessary, the Contractor shall schedule multiple Technical Representatives to be present at the same time for the purpose of coordinating the operation of multiple pieces of related equipment.
- B. For each site visit, the Technical Representative shall submit jointly to the City, the Engineer, and the Contractor a complete signed report of the results of their inspection, operation, adjustments, and testing. The report shall include detailed descriptions of the points inspected, tests and adjustments made, quantitative results obtained if such are specified.

- C. The manufacturer's Technical Representative shall provide the following services.
 - Installation: The Technical Representative shall inspect the installed equipment to verify that installation is in accordance with the manufacturer's requirements.
 Where required by individual equipment specifications, the Technical Representative shall also supervise the installation of the equipment.
 - 2. Testing: After installation of the equipment has been completed and the equipment is presumably ready for operation, but before it is operated by others, the Technical Representative shall inspect, operate, test, and adjust the equipment as required to prove that the equipment is in proper condition for satisfactory operation under the conditions specified. Unless otherwise noted in the signed site visit report, the report shall constitute a certification that the equipment conforms to the requirements of the Contract and is ready for startup and that nothing in the installation will render the manufacturer's warranty null and void. The report shall include date of final acceptance field test, as well as a listing of all persons present during tests.
 - 3. Startup: The Technical Representative shall start up the equipment for actual service with the help of the Contractor. In the event that equipment or installation problems are experienced, the Contractor and the representative shall provide the necessary services until the equipment is operating satisfactorily and performing according to the specifications at no additional cost to the City. Unless otherwise noted in the signed site visit report, the report shall constitute a certification that the equipment conforms to the requirements of the Contract and is ready for permanent operation and that nothing in the installation will render the manufacturer's warranty null and void.
 - 4. Training: The Technical Representative shall instruct the City's operating personnel in correct operation and maintenance procedures. The instruction shall demonstrate start-up, operation, control, adjustment, trouble-shooting, servicing, maintenance, and shutdown of each item of equipment. Such instruction shall be scheduled at a time arranged with the City at least 2 weeks in advance of the training and shall be provided while the respective Technical Representative's equipment is fully operational. The Contractor shall have submitted, and had accepted, the O&M Manuals prior to commencement of training. Training shall be provided to four separate shifts of the City's personnel between the hours of 6:00 A.M. and 6:00 P.M. as necessary. The Contractor shall provide professional video recordings of all training sessions. Completed, labeled recordings shall be provided to the City for each type of training session.
 - 5. Services after Startup: Where required by the individual equipment specifications, the Technical Representative shall return to the project site thirty (30) days after the start-up date to review the equipment performance, correct any equipment problems, and conduct operation and maintenance classes as required by the City. This follow-up trip is required in addition to the specified services of Technical Representative prior to and during equipment startup. At this time, if there are no equipment problems, each manufacturer shall certify to the City in writing that their equipment is fully operational and capable of meeting operating requirements. If the equipment is operating incorrectly, the Technical Representative will make no certification to the City until the problems are corrected and the equipment

9

EQUIPMENT GENERAL
PROW#850PS
Exhibit 1D
Page 1138 of 2050

demonstrates a successful thirty (30) days operating period.

- D. Services of the Technical Representative will require a minimum of two (2) site visits, one for installation and testing and one for startup and training, and will be for the minimum number of days recommended by the manufacturer and approved by the Engineer but will not be less than the number of days specified in individual equipment sections.
- E. The Contract amount shall include the cost of furnishing the Technical Representative for the minimum number of days specified, and any additional time required to achieve successful installation and operation. The times specified for services by the Technical Representative in the equipment Specifications are exclusive of travel time to and from the facility and shall not be construed as to relieve the manufacturer of any additional visits to provide sufficient service to place the equipment in satisfactory operation.
- F. The Contractor shall notify the Engineer at least 14 days in advance of each equipment test or City training session.
- G. The Technical Representative shall sign in and out at the office of the Engineer's Resident Project Representative on each day the Technical Representative is at the project.

3.04 INSTALLATION

- A. The Contractor shall obtain written installation manuals from the equipment manufacturer prior to installation. Equipment shall be installed strictly in accordance with recommendations of the manufacturer. A copy of all installation instructions shall be furnished the Engineer's field representative one week prior to installation.
- B. The Contractor shall have on hand sufficient personnel, proper construction equipment, and machinery of ample capacity to facilitate the work and to handle all emergencies normally encountered in work of this character. To minimize field erection problems, mechanical units shall be factory-assembled insofar as practical.
- C. Equipment shall be erected in a neat and professional quality manner on the foundations at the locations and elevations shown on the Drawings.
- D. All equipment sections and loose items shall be match-marked prior to shipping.
- E. For equipment such as pumping units, which require field alignment and connections, the Contractor shall provide the services of the manufacturer's qualified mechanic, millwright, or machinist, to align the pump and motor prior to making piping connections or anchoring the pump base. Alignment shall be as specified herein.
- F. The Contractor shall furnish oil and grease for initial operation and testing. The manufacturer and grades of oil and grease shall be in accordance with the recommendations of the equipment manufacturer.

3.05 ALIGNMENT

A. Set equipment to dimensions shown on drawings. Dimensions shall be accurate to +/- 1/16 inch unless otherwise noted on the drawings. Wedges shall not be used for leveling, aligning, or supporting equipment.

B. General Equipment Leveling: Non-rotating equipment shall be set level to +/- 1/16 inch per 10-foot length (.005 inch per foot) unless otherwise noted on the drawings. Shims shall be used unless equipment is furnished with leveling feet. Set shims flush with equipment baseplate edges. When grouting is required, equipment shall be shimmed to allow a minimum of one-inch grout thickness. Grout shall cover shims at least 3 inches. Final level check shall be held for inspection and approval by Engineer before proceeding.

C. Grouting

- 1. Fill anchor bolt holes or sleeves with grout, after bolt alignment is proven, and prior to placing grout under equipment bases.
- 2. Surface Preparation. Roughen surface by chipping, removing laitance, and unsound concrete. Clean area of all foreign material such as oil, grease, and scale. Saturate area with water at least 4 hours prior to grouting, removing excess water ponds.
- 3. Application. Place grout after the equipment base has been set and its alignment and level have been approved. Form around the base, mix grout, and place in accordance with the grout manufacturers published instructions. Eliminate all air or water pockets beneath the base using a drag chain or rope.
- 4. Finishing. Point the edges of the grout to form a smooth 45-degree slope.
- 5. After grout has cured (not before 3 days after placement) paint exposed surfaces of grout with shellac.
- 6. Level Verification. After grout has cured, and immediately prior to drive alignment, recheck equipment for level and plumb. Re-level and square as necessary. Hold final checks for inspection and approval by Engineer.
- D. Inspect for and remove all machining burrs or thread pulls in female holes on mating surfaces of mounting frame and machine feet.
- E. Inspect and clean equipment mounting base pads, feet, and frames to remove all grease, rust, paint and dirt.
- F. Assembled equipment shafts shall be set level to .0015 inches per foot of shaft length (+/-.0005 inches) up to a maximum of 0.015 inches for any length shaft unless the manufacturer's requirements are more stringent or unless otherwise noted in the equipment specifications. Use the machined surfaces on which the equipment sets for the base/mounting frame leveling plane. Use the machined shaft surface for equipment leveling plane.
- G. Sprocket and Sheave Alignment. Check shaft mounted components for face runout and eccentricity (outside diameter) runout by magnetically mounting a dial indicator on a stationary base and indicating over 360 degrees on a continuous machined surface at the outside diameter of the component. Maximum allowable total indicated face runout and eccentricity for sprockets and sheaves will be per ANSI Standard B29.1-1975.
- H. Belt tensioning. Set drive belt tension to manufacturer's specification for the belt type.

Recheck alignment after drive tensioning.

I. Thermal/Mechanical Growth. Thermal/mechanical growth corrections for driver and driven machines will be used in vertical and horizontal alignment where applicable. The equipment manufacturer will determine thermal/mechanical growth applicability for any machine and provide the correction offsets to be used.

J. Rotating Shaft Alignment

- 1. Fixtures will be set up on the driver and driven machine, machines shaft surfaces. Machined coupling hubs may be used only if there is no clearance to mount fixtures directly on the shafts.
- 2. Primary alignment method for direct drive machines is when coupled. Uncoupled alignment will be used only when approved by the Engineer.
- 3. Account for possible coupling flex by always rotating coupled machines in the same direction during alignment.
- 4. Uncoupled machines must be connected so that both shafts turn together without relative motion during alignment.
- 5. Indicator bar sag will be measured and included for each reverse indicator alignment setup.
- 6. Reverse Dial Indicator. The final maximum allowable misalignment: vertical and horizontal from the desired targets of .000 inches (for a non-thermal growth machine) or from the given target readings (for a thermal growth machine) must meet BOTH of the following conditions simultaneously: 1/2 the final total indicator reading at each indicator will be no more than shown in the table below AND the final remaining correction at each machine foot be no more than .001 inches of required movement.

Machine Speed (RPM)	Total Misalignment* (inches)
Up to 1800	.002
1800 and greater	.001

^{*1/2} indicator reading

3.06 FIELD TESTING

- A. All equipment shall be set, aligned and assembled in conformance with the manufacturer's drawings and instructions. Provide all necessary calibrated instruments to execute performance tests. Submit report certified by the pump manufacturer's representative.
- B. Preliminary Field Tests, Yellow Tag

- 1. As soon as conditions permit, after the equipment has been secured in its permanent position, the Contractor shall:
 - a. Verify that the equipment is free from defects.
 - b. Check for alignment as specified herein.
 - c. Check for direction of rotation.
 - d. Check motor for no load current draw.
- 2. The Contractor shall flush all bearings, gear housings, etc., in accordance with the manufacturer's recommendations, to remove any foreign matter accumulated during shipment, storage or erection. Lubricants shall be added as required by the manufacturer's instructions.
- 3. When the Contractor has demonstrated to the Engineer that the equipment is ready for operation, a yellow tag will be issued. The tag will be signed by the Engineer, or the Engineer's assigned representative and attached to the equipment. The tag shall not be removed.
- 4. Preliminary field tests, yellow tag, must be completed before equipment is subjected to final field tests, blue tag.

C. Final Field Tests, Blue Tag

- 1. Upon completion of the above, and at a time approved by the Engineer, the equipment will be tested by operating it as a unit with all related piping, ducting, electrical and controls, and other ancillary facilities.
- 2. The equipment will be placed in continuous operation as prescribed or required and witnessed by the Engineer or the Engineer's assigned representative and the City or the City's assigned representative.
- 3. The tests shall prove that the equipment and appurtenances are properly installed, meet their operating cycles and are free from defects such as overheating, overloading, and undue vibration and noise. Operating field tests shall consist of the following:
 - a. Check equipment for excessive vibration and noise as specified herein.
 - b. Check motor current draw under load conditions. The rated motor nameplate current shall not be exceeded.
 - c. Recheck alignment with dial indicators where applicable, after unit has run under load for a minimum of 24 hours.
- D. In addition to the above described field tests, any other tests specifically required by the Section 11100 Pumps General, the individual equipment Specifications, or by the manufacturer shall be performed.
- E. Until final field tests are acceptable to the Engineer, the Contractor shall make all necessary changes, readjustments and replacements at no additional cost to the City.

- F. Upon acceptance of the field tests, a blue tag will be issued. The tag will be signed by the Engineer and attached to the unit. The tag shall not be removed and no further construction work will be performed on the unit, except as required during start-up operations and directed by the Engineer.
- G. Defects which cannot be corrected by installation adjustments will be sufficient grounds for rejection of any equipment.
- H. All costs in connection with field testing of equipment such as lubricants, temporary instruments, labor, equipment, etc., shall be borne by the Contractor. Power, fuel, chemicals, water, etc. normally consumed by specific equipment shall be supplied by the City unless otherwise specified in the individual equipment specifications.
- I. The Contractor shall be fully responsible for the proper operation of equipment during tests and instruction periods and shall neither have nor make any claim for damage which may occur to equipment prior to the time when the City formally takes over the operation thereof.
- J. Field testing of electric motors shall be in accordance with Division 16, Electrical.

3.07 VIBRATION TESTING

- A. Unless specified otherwise in the detailed equipment specifications, each pump, blower, compressor, motor and/or similar item of stationary rotating equipment having a rated power in excess of 40HP shall be tested after installation for acceptable vibration levels.
- B. Vibration testing shall be performed by an experienced factory-trained and authorized third-party analysis expert (not a sales representative) retained by the Contractor and approved by the Engineer. Each unit or pump system shall be tested separately without duplicate equipment running. All field testing shall be done in the presence of the Engineer. The Engineer shall be furnished with four (4) certified copies of vibration test data for each test performed.
- C. For systems with variable speed drives, tests shall be conducted at various speeds between maximum and minimum. Testing shall also be conducted at dynamically varying fixed speeds from minimum to maximum using a sinusoidal speed setpoint signal generator. For systems with two-speed drives, tests shall be conducted at both speeds. For systems with constant-speed drive, tests shall be conducted under various loading conditions as determined by the Engineer.
- D. All field vibration tests shall be performed with the equipment operating on the product for which it is intended, or a substitute acceptable to the Engineer.
- E. The term displacement, as used herein, shall mean total peak-to-peak movement of vibrating equipment, in mils; velocity or speed of the vibration cycle, measured in G's. Displacement and velocity shall be measured by suitable equipment equal to IRD Mechanalysis, Bentley, Nevada.
- E. Frequency of vibration, in cycles per minute (cpm), shall be determined when vibration exceeds specified levels or as otherwise necessary. Vibration shall be measured on the bearing housing, unless other locations are deemed necessary by the vibration analysis

expert and Engineer.

- F. For all equipment tested, vibration shall be checked in the radial and axial directions. Unless otherwise specified elsewhere, axial vibration shall not exceed 0.1 in/sec; and radial vibration shall not exceed 0.2 in/sec. For pumps radial vibration shall not exceed that permitted by the Hydraulic Institute Standards except that, at vibration frequencies in excess of 8,000 cpm, the velocity shall not exceed 0.2 in/sec.
- G. Copies of test results shall be submitted to the Engineer for review. Should the vibration field test results exceed shop test results, the manufacturer's recommendations, or the limits specified herein, the Contractor shall correct the deficiencies within thirty (30) days. After corrections have been completed, the vibration testing shall be re-run and the results re-submitted to the Engineer for review.
- H. Noise or vibration in any rotating equipment which the Engineer determines to be excessive or damaging and falls outside of the acceptable limits for that particular piece of equipment, shall be cause for rejection.

3.08 FAILURE OF EQUIPMENT TO PERFORM

- A. Any defects in the equipment or failure to meet the guarantees or performance requirements of the Specifications shall be promptly corrected by the Contractor by replacements or otherwise.
- B. If the Contractor fails to make these corrections, or if the improved equipment shall fail again to meet the guarantees or specified requirements, the City, notwithstanding they having made partial payment for work and materials which have entered into the manufacture of said equipment, may reject said equipment and order the Contractor to remove it from the premises at the Contractor's expense.
- C. The Contractor shall then obtain specified equipment to meet the contract requirements or upon mutual agreement with the City, adjust the contract price to reflect not supplying the specific equipment item.
- D. In case the City rejects said equipment, then the Contractor hereby agrees to repay to the City all sums of money paid to the Contractor for said rejected equipment on progress certificates or otherwise on account of the lump sum prices herein specified.
- E. Upon receipt of said sums of money, the City will execute and deliver to the Contractor a bill of sale of all their rights, title, and interest in and to said rejected equipment; provided, however, that said equipment shall not be removed from the premises until the City obtains from other sources other equipment to take the place of that rejected.
- F. Said bill of sale shall not abrogate City's right to recover damages for delays, losses, or other conditions arising out of the basic contract.

3.09 PAINTING

A. All surface preparation, shop painting, field repairs, finish painting, and other pertinent detailed painting specifications shall conform to the Section 09900 – Painting.

- B. All shop coatings shall be compatible with proposed field coatings.
- C. All inaccessible surfaces of the equipment, which normally require painting, shall be finished painted by the manufacturer. The equipment and motor shall be painted with a high quality epoxy polyamide semi-gloss coating specifically resistant to chemical, solvent, moisture, and acid environmental conditions, unless otherwise specified.
- D. Gears, bearing surfaces, and other unpainted surfaces shall be protected prior to shipment by a heavy covering of rust-preventive compound sprayed or hand applied which shall be maintained until the equipment is placed in operation. This coating shall be easily removable by a solvent.

3.10 WELDING

- A. The Equipment Manufacturer's shop welding procedures, welders, and welding operators shall be qualified and certified in accordance with the requirement of AWS D1.1 "Structural Welding Code Steel" or AWS D1.2 "Structural Welding Code Aluminum" of the American Welding Society, as applicable.
- B. The Contractor's welding procedures, welders, and welding operators shall be qualified and certified in accordance with the requirements of AWS D1.1 "Structural Welding Code Steel" or AWS D1.2 "Structural Welding Code Aluminum" of the American Welding Society, as applicable.
- C. The Contractor shall perform all field welding in conformance with the information shown on the Equipment Manufacturer's drawings regarding location, type, size, and length of all welds in accordance with "Standard Welding Symbols" AWS A2.0 of the American Welding Society, and special conditions, as shown by notes and details.

- END OF SECTION -

EQUIPMENT GENERAL
PROW#\$#0PK\$
Exhibit 1D
Page 1145 of 2050

SECTION 11100 PUMPS - GENERAL

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install all tools, supplies, materials, equipment and labor necessary for the installation, testing, and placing into operation of all pumps and pumping appurtenances, complete and operable, all in accordance with the requirements of the Contract Documents.
- B. All pumping equipment shall be provided in accordance with the requirements of the Section 11000 Equipment General Provisions.
- C. The provisions of this Section shall apply to all pumps and pumping equipment specified, except where otherwise specified in the Contract Documents.
- D. The Contractor, through a single Supplier, shall have unit responsibility for the furnishing and functional operation of a given type of complete pump systems including the pumps, drives, drive motors, speed control equipment (where variable speed drives are required) and accessories. The designated single Supplier, however, need not manufacture more than one part of the unit (pump, or motor and drive), but shall coordinate the design, assembly, testing, and erection of the unit(s) as specified herein.
- E. The pumps shall be provided complete with all accessories, shims, sheaves, couplings, and other appurtenances as specified, and as may be required for a complete and operating installation.
- F. The Supplier shall include, in its bid, time, labor, materials and tools required for installation assistance, testing, and start-up with the Contractor.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 01300 Submittals
- B. Section 05500 Metal Fabrications
- C. Section 09900 Painting
- D. Section 11000 Equipment General Provisions
- E. Section 15000 Basic Mechanical Requirements
- F. Section 16000 Basic Electrical Requirements
- G. Section 16480 Low Voltage Electric Motors

1.03 REFERENCE SPECIFICATIONS, CODES AND STANDARDS

- A. All equipment, materials, and installations shall conform to the requirements of the most recent editions with the latest revisions, supplements, and amendments of the specifications, codes and standards listed herein.
- B. Codes: The Building Code, as referenced herein, shall be the Florida Building Code (FBC).
- C. Commercial Standards: Pumping system equipment, installation and testing shall be in accordance with the following applicable codes and standards:
 - 1. Hydraulic Institute
 - a. ANSI//HI 3.1-3.5 Rotary Pumps for Nomenclature, Definitions, Application and Operation
 - b. ANSI/HI 3.6 Rotary Pump Test
 - c. ANSI/HI 9.6.1 Rotodynamic Pumps Guideline for NPSH Margin
 - d. ANSI/HI 9.6.2 Rotodynamic Pumps for Assessment of Applied Nozzle Loads
 - e. ANSI/HI 9.6.3 Rotodynamic Pumps Guideline for Operating Regions
 - f. ANSI/HI 9.6.4 Rotodynamic Pumps for Vibration Measurements and Allowable Values
 - g. ANSI/HI 9.6.5 Rotodynamic Pumps Guideline for Condition Monitoring
 - h. ANSI/HI 9.6.6 Rotodynamic Pumps for Pump Piping
 - i. ANSI/HI 9.6.8 Rotodynamic Pumps -Guideline for Dynamics of Pumping Machinery
 - j. ANSI/HI 9.8 Rotodynamic Pumps for Pump Intake Design
 - k. ANSI/HI 11.6 Rotodynamic Submersible Pumps for Hydraulic Performance, Hydrostatic Pressure, Mechanical and Electrical Tests
 - I. ANSI/HI 12.1-12.6 Rotodynamic Slurry Pump for Nomenclature, Definitions, Applications and Operation
 - m. ANSI/HI 14.1-14.2 Rotodynamic Pumps for Nomenclature and Definitions
 - n. ANSI/HI 14.3 Rotodynamic Pumps for Design and Application
 - o. ANSI/HI 14.6 Rotodynamic Pumps for Hydraulic Performance Acceptance Tests

- 2. American Society of Mechanical Engineers
 - a. ANSI/ASME B73.1 Specifications for Horizontal End Suction Centrifugal Pumps for Chemical Process
- 3. American Petroleum Institute
 - a. ANSI/API Standard 610 Centrifugal Pumps for Petroleum, Petrochemical and Natural Gas Industries
- 4. American Water Works Association
 - a. ANSI/AWWA E103 Standard for Horizontal and Vertical Line-Shaft Pumps
- 5. American Society for Testing and Materials
 - a. A36 Specification for Structural Steel
 - b. A48 Specification for Gray Iron Castings
 - A53 Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless
 - d. A148 Specification for Steel Castings, High Strength, for Structural Purposes
 - e. A193 Specification for Alloy Steel and Stainless Steel Bolting Materials for High Temperature Service
 - f. A276 Specification for Stainless Steel Hot/Cold-Finished Bars
 - g. A322 Specification for Steel Bars, Alloy, Standard Grades
 - h. A514 Specification for High Yield Strength, Quenched and Tempered alloy Steel Plate, Suitable for Welding
 - i. A532 Specification for Abrasion-Resistant Cast Irons
 - j. A536 Specification for Ductile Iron Castings
 - k. A565 Specification for Martensitic Stainless Steel Bars
 - I. A582 Specification for Free-Machining Stainless and Heat-Resisting Steel Bar, Hot-Rolled and Cold-Rolled
 - m. A743 Specification for Castings, Iron-Chromium, Iron-Chromium-Nickel and Nickel-Base, Corrosion-Resistant for General Application
 - n. B148 Specification for Aluminum-Bronze Sand Castings
 - o. B584 Specification for Copper Alloy Sand Castings for General Application

- 6. American National Standards Institute
 - a. B16.1 Standard for Cast Iron Pipe Flanges and Flanged Fittings
 - b. B16.5 Standard for Pipe Flanges and Flanged Fittings
- 7. ANSI/NFPA 70 National Electric Code
- 8. Society of Automotive Engineers SAE J404 Chemical Compositions of SAE Alloy Steels
- 9. Standard, ISO 1940 Mechanical Vibration Balance quality requirements for rotors in a constant rigid state

1.04 CONTRACTOR SUBMITTALS

- A. Shop Drawings: Shop drawings of all pumps shall include the following information in addition to the requirements of the Section 01300 Submittals and Section 11000 Equipment General Provisions:
 - 1. Pump name, identification number and specification number.
 - 2. Performance characteristics and descriptive data, including but not limited to pump performance curves at rated speed and reduced speeds (if reduced speeds are specified). Curves shall indicate flow, head, impeller diameter, efficiency, brake horsepower, and NPSH required. Curves shall identify minimum continuous stable flow (minimum flow to avoid suction recirculation), preferred operating region (POR) and allowable operating region (AOR) per the latest version of ANSI/HI 9.6.3. Performance curves submitted shall be for the entire pump assembly, including efficiency corrections and losses. Pump performance curves shall be submitted both in the form of performance data cut sheets and in tabular format. Tabular data shall include the following:
 - a. Flow
 - b. Pump Head
 - c. NPSH required
 - d. Pump Efficiency
 - e. A minimum of 10 data points shall define rotodynamic pump performance curves listed above. Performance curve data points shall include the following:
 - 1) best efficiency point
 - 2) all specified operating points
 - 3) preferred operating range minimum and maximum

- 4) allowable operating range minimum and maximum
- 5) shutoff condition
- 6) runout
- 7) The remainder of the points shall be distributed evenly to clearly define the shape of each of the curves.
- 8) Each data point shall be reported to a minimum of three (3) significant figures.
- 9) The curve data shall align with the HI acceptance grade (1B, 2B, 1U, etc.) as specified in the individual pump specification and shall explicitly state the applicable tolerance band, as defined by the Hydraulic Institute Standards, associated with each value.
- 3. Minimum submergence requirements shall be provided for vertically suspended pumps and submersible pumps.
- 4. Detailed dimensional drawings and setting plans including but not limited to:
 - a. General cutaway sections
 - b. Materials
 - c. Dimension of shaft projections
 - d. Shaft and keyway dimensions
 - e. Shaft diameter
 - f. Shaft-impeller connection details
 - g. Dimension between bearings
 - h. General dimensions of pump
 - i. Suction head bolt orientation
 - j. Anchor bolt locations
 - k. Forces.
 - I. Assembly views
 - m. Provide weight of entire pump assembly, including motor and base weight of individual major subassemblies. Indicate the weight of each component, and

total static and dynamic loads imparted by the equipment to the supporting structure.

- n. Impeller
- o. Drawings shall identify each component by tag number to which the catalog data and detail sheets pertain
- 5. Details of shaft sealing system.
- 6. Electrical data including control and wiring diagrams.
- 7. Pump drive and motor data in accordance with Division 16 Electrical, of these documents. Complete motor data shall include but not be limited to size, make, type, and characteristics along with wiring diagrams. Where pump and motor speeds are to be regulated by variable speed drives, the Contractor shall coordinate, furnish and exchange all necessary requirements with the respective equipment manufacturers to ensure compatibility and shall submit pump, motor and variable speed drive shop drawings together as a complete system.
- 8. Information on bearing types and bearing life
- 9. Gear box design and performance criteria and AGMA service factor
- 10. Equipment protective device details and connection diagrams
- 11. Information on pump appurtenances including couplings, shaft guards, v-belt drive systems, etc.
- 12. Submersible pump submittals shall also include:
 - a. Product data sheets for power and control cables, length of cables, and cable support system.
 - b. Details on pump guide rail system and mounting requirements
 - c. Minimum allowable pump submergence
 - d. Details on submersible pump's retrieval system
- 13. Shipment, delivery, handling, and storage instructions
- 14. Installation instructions
- 15. Any additional information required to demonstrate compliance with the specifications.
- B. Certification: The Contractor shall obtain written certification from the pump manufacturer, stating that the equipment will efficiently and thoroughly perform the required functions in accordance with these Specifications and as indicated on the Drawings, Contractor shall have unit responsibility for coordination of all equipment, including motors, variable speed drives, controls, and services required for proper installation and operation of the

completely assembled and installed pumps. The Contractor shall submit all such certificates to the Engineer.

- C. O & M Manuals: Prior to start-up the Contractor shall furnish complete operations and maintenance manuals in accordance with the Section 01300 Submittals and Section 11000 Equipment General Provisions.
- D. Spare Parts: The Contractor shall obtain from the pump manufacturer a set of the specified herein spare parts of all items of each pump, motor, and drive, subject to wear, such as seals, packing, gaskets, nuts, bolts, washers, wear rings, etc., as well as a set of spare bearings. It shall furnish all these parts suitably packaged and labeled with the part number, manufacturer's description, and the associated equipment number described above for tools. Required spare parts shall be as specified in individual section of the specification. If not listed there, then spare parts shall conform to the standards of the proposed supplier.
- E. Maintenance: Printed instructions relating to proper maintenance, including lubrication, and parts lists indicating the various parts by name, number, and diagram where necessary, shall be furnished in duplicate with each unit or set of identical units in each pumping station. A recommended spare parts list shall be included. Complete lubrication instructions and lubricant schedule, including manufacturer's recommended lubricant. All lubricants shall be food grade, NSF 61 approved. Schedule shall include frequency of lubricant application, type of lubricant, and instructions regarding lubricant application.
- F. Field Procedures: Instructions for field procedures for erection, adjustments, inspection, and testing shall be provided with the shop drawings.

1.05 QUALITY ASSURANCE

- A. Performance Curves: All centrifugal pumps shall have a continuously rising curve. In no case shall the required horsepower at any point on the performance curve exceed the rated horsepower of the motor or drive. Safety factors will not be considered in determining compliance with this requirement.
- B. Testing: Contractor shall be responsible for the coordination of factory and field tests as required in Part 3 of this section.

1.06 MANUFACTURER'S SERVICE REPRESENTATIVE

A. Unless otherwise referenced in the individual equipment specification section, as a minimum the services of the manufacturer's representative shall be provided for a period as stated in the following schedule:

Installation	Operation	Guaranteed
Trip	Trip	Period
(days)	Days*	Trip (days)
2	2	1

B. Any additional time required to achieve successful installation and operation shall be at the expense of the Contractor.

1.07 CLEANUP

A. After completion of the installation and testing, the Contractor shall remove all debris from the site, clean all the pumping equipment and controls, and hand over its work in perfect operating condition.

1.08 GUARANTEES, WARRANTIES

A. After completion, the Contractor shall furnish to the City the manufacturer's written guarantees that the pumping equipment will operate with the published efficiencies, heads, and flow ranges and meet these Specifications. The Contractor shall also furnish the manufacturer's warranties as published in its literature and as specified.

PART 2 - PRODUCTS

2.01 GENERAL

- A. Wherever it is specified that a single Supplier shall be responsible for the compatible and successful operation of the various components of any pumping equipment, it shall be understood to mean that the Contractor shall furnish and install only such pumping equipment as the designated single Supplier will certify is suitable for use with its equipment and with the further understanding that this in no way constitutes a waiver of any specified requirements.
- B. All combinations of manufactured equipment which are provided under these Specifications shall be entirely compatible, and the Contractor shall be responsible for the compatible and successful operation of the various components of the units conforming to specified requirements. All necessary mountings and appurtenances shall be included.
- C. Where two or more units of the same type and/or size of pumping equipment are required, such units shall all be produced by the same manufacturer.

2.02 MATERIALS

- A. All materials employed in the pumping equipment shall be suitable for the intended application; material not specifically called for shall be high-grade, standard commercial quality, free from all defects and imperfection that might affect the serviceability of the product for the purpose for which it is intended, and shall conform to the following requirements unless otherwise specified in individual pumping equipment Specifications:
 - 1. Cast iron pump casings and bowls shall be of close-grained gray cast iron, conforming to ASTM A48, or equal.
 - 2. Bronze pump impellers shall conform to ASTM B584, "G Bronze" or ASTM B148 for Aluminum Bronze.
 - 3. Stainless steel pump shafts shall be of ASTM A-743 CF-8M. Miscellaneous stainless steel parts shall be of Type 316.
 - 4. All anchor bolts, nuts and washers shall be Type 316 stainless steel, unless otherwise specified in individual pumping equipment Specifications.

PUMPS – GENERAL CAM #25-0925 Exhibit 1D Page 1153 of 2050

2.03 PUMP APPURTENANCES

- A. Nameplates: In addition to the requirements of Section 11000 Equipment General Provisions, nameplate data for each pump shall include manufacturer's name, year of manufacture, model number, serial number, the rating in gallons per minute, rated total dynamice head, speed in rotations per minute, and efficiency at the primary design point.
- B. Solenoid Valves: Where required, the pump manufacturer shall furnish and install solenoid valves on the water or oil lubrication lines. Solenoid valve electrical rating shall be compatible with the motor control voltage and shall be furnished complete with all necessary conduit and wiring installation from control panel to solenoid.
- C. Pressure Gages: The Contractor shall furnish and install pressure gauges on the suction and discharge of each pump, except wet-pit submersible pumps and vertical turbine pumps. The Contractor shall furnish and install pressure gauges on the discharge piping of each wet pit submersible pump and vertical turbine pump in the locations shown on the Drawing or as directed by the Engineer Pressure gages shall be located in a representative location, where not subject to unbalanced flow conditions, shock or vibrations, in order to achieve true and accurate readings. Pressure gages shall be furnished under Division 17, Instrumentation, of these documents.
- D. Variable Speed Drives: Variable speed drives, drive motors, speed control equipment, and accessories shall be furnished in accordance with Division 16, Electrical, of these documents.

2.04 PUMP REQUIREMENTS - GENERAL

- A. Flanges: Suction and discharge flanges shall conform to ASME B16.1 or B16.5 dimensions.
- B. Handholes: For pumps in raw sewage service and as required by individual pump specifications, handholes shall be provided on the pump suction nozzle and the pump volute and shall be shaped to follow the contours of the casing or adjoining piping to avoid any obstructions in the water passage.
- C. Mechanical Seals: Mechanical seal designs shall be selected for highest reliability and for rugged service. Mechanical seals shall be provided where required by the Specifications. Unless the pump manufacturer recommends better seal for a specific application, mechanical seals shall be furnished as specified in individual pumping equipment sections.
- D. For all seal arrangements, seals must be flushed by the pumped fluid or externally supplied liquid as indicated by individual pumping equipment specifications or as required by manufacturer, in order to maintain reliable seal performance.
- E. All drivers and shafting shall comply with the requirements of the Part 2 Products.

- F. Drive shaft assemblies shall be sized such that critical speed conforms to the following requirements:
 - 1. For constant speed pumps, operating speed shall not be more than 75 percent of critical speed, nor within the range of 44 percent to 56 percent of critical speed for horizontal shafts.
 - 2. For variable speed pumps, full speed shall not be more than 44 percent of critical speed for horizontal shafts or 75 percent of critical speed for vertical shafts.
- G. All shafting shall be dynamically balanced in accordance with the recommendations of the shafting manufacturer.
- H. Drive shaft dimensions and, where applicable, the location of steady bearing supports are shown approximately to scale on the drawings. Exact dimensions and support arrangements will depend on the motor and pump which the Contractor proposed to install. The Contractor shall submit complete shop drawings and Specifications to the Engineer for review of the drive shaft arrangement proposed.
- I. The drive shaft manufacturer shall furnish to the Contractor complete installation instructions for the equipment furnished. The Contractor shall install the drive shaft assemblies per the manufacturer's instructions. The shafts shall be installed with a minimum of one degree offset and a maximum of five degrees offset at each universal joint.
- J. The Contractor shall furnish and install a heavy-duty shaft guard for all drive shafting which is less than seven feet above floor or platform level in accordance with the provisions of Paragraph 1910.210 of OSHA Rules and Regulations. Provision shall be made in the guard as necessary for lubrication and inspection access of the joints and bearings without the necessity of removing the entire guard assembly.
- K. The minimum ABMA L10 bearing life for all pump, motor and drive bearings shall be 60,000 hours unless otherwise stated in the individual pump specification sections.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. General: Pumping equipment shall be installed in accordance with the manufacturer's recommendations, industry accepted practices, acceptable procedures submitted with the shop drawings and as indicated on the Drawings, unless otherwise accepted by the Engineer.
- B. Alignment: Equipment shall be field tested to verify proper alignment, operation as specified, and freedom from binding, scraping, vibration, shaft runout, or other defects. Pump drive shafts shall be measured just prior to assembly to ensure correct alignment without forcing. Equipment shall be secure in position and neat in appearance.
- C. Lubricants: The installation work shall include furnishing the necessary oil and grease for initial operation.

11100

- D. Connections: All motors shall be connected to the conduit system by means of a short section (18-inch minimum) of weatherproof flexible conduit, unless otherwise indicated. For connections for No. 6 AWG and smaller wire size, the Contractor shall furnish flexible conduit with an acceptable grounding conductor inside the flexible section. For connections of No. 4 AWG or larger wire size, the Contractor shall install a grounding conduction in the conduit and terminate at the motor control center with an acceptable grounding clamp.
- E. Drains: All gland seals, air valves, and drains shall be piped to the nearest floor sink or drain with galvanized steel pipe or copper tube, properly supported with brackets.

3.02 TESTING

- A. Factory Testing: The Contractor shall be responsible for the coordination of the following tests of each pump, variable speed drive, and motor. Pump tests shall utilize the actual motors and pump-motor bases and couplings to be furnished with the pumping equipment. Where required as indicated by the individual pump specification sections, variable speed pumps shall be tested with the actual variable speed controllers supplied for the project. Use of the pump manufacturers standard test motors and test stand is not acceptable.
 - 1. General: Tests shall be performed in accordance with the Standards of the Hydraulic Institute, Inc. Tests shall be performed on the actual assembled unit, including pump, motor, coupling and base as a minimum. Prototype and mathematical model tests will not be acceptable. Pump shop tests shall be made by the manufacturer and certified curves shall be submitted prior to witness tests. The shop tests shall consist of standard IEEE tests of motors, operation of the pumps and motors installed on the actual pump and motor bases to be furnished for proper balance of equipment and all other requirements as specified under this section. Pumps motors and drives shall be factory witness tested, as defined herein. All electronic transducers, meters, gauges, and test instruments shall be calibrated within 90 days prior to the scheduled test and certified calibration data shall be provided. Differential pressure type flow meters, such as venturi meters are preferred and shall have been calibrated, and their accuracy certified within the past 12 months. In case of failure of any unit to meet the test requirements, the manufacturer shall make such alterations as are necessary, and the tests shall be repeated without additional cost to the City until the equipment test is passed.
 - 2. Factory Witnessed Tests: All pumps and motors, 150 horsepower and larger, shall be factory tested as complete, assembled units, as specified above, and witnessed by a representative of the Engineer and City. The Contractor shall give the Engineer and City a minimum of two weeks notification prior to the test.
 - 3. Certified Test Data: Factory test results shall be submitted to the Engineer in accordance with Section 01300 Submittals. No equipment shall be shipped until the test data is acceptable to the Engineer. Acceptance tolerances shall be in accordance with ANSI/HI 14.6 grade 1U for the design point and grade 3B for other points unless otherwise stated in the individual equipment specification sections. Tests shall include those listed below. The applicable best standard for submersible sump and non-clog pumps shall be ANSI / HI 11.6 Submersible Pump Test.

- 4. Hydrostatic Tests: Hydrostatic tests should be carried out in accordance with ANSI/ Hydraulic Institute Standard 14.6 at 130 percent of the rated pressure. Rated pressure shall be the maximum operating suction pressure plus the pump differential pressure at the design point. Pumps with plastic casings shall be tested at 110% of the rated pressure.
- 5. Hydraulic Performance Test: Test shall be at rated full speed with a minimum of 5 readings between shutoff head and 25-percent above design capacity including the specified operating conditions of head and capacity, recorded on data sheets as defined by the Hydraulic Institute, signed, dated, and certified. Certified pump tests shall be conducted through the specified range of flow vs./head/capacity/efficiency curves plotted at pump design speed prior to connection to variable speed drive control systems (where provided). During each test, the pump shall be run at each head/capacity condition as specified in the pump schedule for sufficient time to accurately determine and record capacity, head, pump speed, drawn horsepower, pump efficiency and motor efficiency. Where the pump application requires variable speed, the above tests shall be repeated at 90 percent, 80 percent and 65 percent of full speed. A minimum of 5 readings are required at each test speed.
- 6. NPSH Tests: Where required by the individual equipment specification sections, NPSH tests shall be conducted to demonstrate satisfactory operation with the specified available NPSH.
- B. Field Tests: All pumping units shall be field tested after installation, in accordance with the Contract Documents, to demonstrate satisfactory operation, without causing excessive noise, vibration, cavitation, and overheating of the bearings. The field testing shall be performed in the presence of an experienced field representative of the manufacturer of each major item of equipment, who shall supervise the following tasks and shall certify in writing that the equipment and controls have been properly installed, aligned, lubricated, adjusted, and readied for operation:
 - Start-up: Start-up, check, and operate the equipment over the entire speed range.
 The vibration shall be within the amplitude limits recommended in the Hydraulic
 Institute Standards and it shall be recorded at a minimum of four pumping conditions
 defined by the Engineer.
 - Performance: Pump performance shall be documented by obtaining concurrent readings, showing motor voltage, amperage, pump suction head, and pump discharge head, for at least four pumping conditions at each pump rpm. Each power lead to the motor shall be checked for proper current balance. Flow shall be measured to the extent possible by permanently installed instrumentation or drawdown measurement.
 - Bearing Temperatures: Bearing temperatures shall be determined by a contact-type thermometer. A running time of at least 20 minutes shall be maintained for this test, unless liquid volume available is insufficient for a complete test.
 - 4. Natural-Frequency: Natural frequency testing of each installed vertical turbine pump assembly using the "bump test" method.

- 5. Vibration: Operate the equipment over the entire speed range. The vibration shall be within the limits of ANSI/HI 9.6.4 for field testing and it shall be recorded at a minimum of 4 steady state speed and pumping conditions as defined by the City's representative as well as under actual variable pressure, flow and speed pumping conditions.
- 6. Certification: The field testing shall be witnessed by the City or its representative. The Contractor shall submit to the Engineer a written notification of all pump field tests a minimum of one week prior to testing. In the event any of the pumping equipment fails to meet the above test requirements, it shall be modified and retested in accordance with the requirements of these Specifications. The Contractor shall then certify in writing that the equipment has been satisfactorily tested, and that all final adjustments thereto have been made. Certification shall include date of final acceptance test, as well as a listing of all persons present during tests, and resulting test data. The costs of all Work performed in this Paragraph by factory-trained representatives shall be borne by the Contractor.
- 7. Acceptance: In the event of failure of any pump to meet any of the above requirements or efficiencies, the Contractor shall make all necessary modifications, repairs, or replacements to conform to the requirements of the Contract Documents and the pump shall be re-tested at no additional compensation, until found satisfactory.

3.03 PROTECTIVE COATING

A. Painting shall be in accordance with the Section 11000 – Equipment General Provisions and 09900 – Painting.

- END OF SECTION -

11100

SECTION 11105 SUBMERSIBLE AXIAL FLOW PUMPS

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. Provide all labor, materials, equipment, motors, anchorage systems, and incidentals necessary for the installation, testing, and placing into operation submersible axial flow pumps at the locations shown on the Drawings and as specified herein. All pumps shall be supplied by the same manufacturer.
- B. Equipment shall be provided in accordance with the requirements of the Section 11000 Equipment General Provisions and Section 11100 Pumps General.
- C. The Manufacturer shall have unit responsibility for coordinating the proper pump mounting system with the Contractor to ensure stable pump operation. The Contractor shall install, anchor, test, and align the equipment such that vibration levels are within the Manufacturer's recommended tolerances. The Contractor shall provide all supports, stiffeners, etc that may be required to provide systems that operate reliably and within vibration limits specified by the Manufacturer.

1.02 COORDINATION

- A. To assure unity of responsibility, the motor and pump provided as part of this Contract shall be furnished and coordinated by the pump manufacturer. The Contractor shall assume full responsibility for the coordination, factory testing, satisfactory installation and operation of the pumping systems, including pumps, motors, and electrical controls as specified.
- B. Pump motor starters shall be furnished per Division 16. Pump control panels shall be furnished per Division 17. Contractor shall facilitate coordination between the pump manufacturer, Division 16 Supplier and Division 17 Supplier to ensure specified pump functionality and full compatibility with the electrical and control equipment furnished under this contract.

1.03 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 11000 Equipment General Provisions
- B. Section 11100 Pumps General
- C. Section 16480 Low Voltage Electric Motors

1.04 SUBMITTALS

A. Performance Affidavit: A performance affidavit shall be submitted with the Shop Drawings in accordance with, or in addition to the submittal requirements specified in the Section 01300 – Submittals, and Section 11000 – Equipment General Provisions.

- B. Shop Drawings: Shop drawings shall be furnished as specified in Section 01300 Submittals and Section 11100 Pumps General. Pump Curves shall be submitted at minimum, intermediate and maximum operating speed if variable speed control is specified.
- C. O&M Manuals: Prior to start-up the Contractor shall furnish complete operations and maintenance manuals in accordance with Section 01300 – Submittals, and Section 11000 – Equipment General Provisions.
- D. Factory Test Reports and Field Test Reports: Factory test reports and Field Test Reports shall be submitted in accordance with Section 11100 Pumps General.
- E. Pipe Layout Drawings: Contractor shall submit pipe layout drawings and schedule with the pump shop drawings.
- F. Grout: Contractor shall submit manufacturer's information on type of grout to be used.

1.05 WARRANTY AND GUARANTEE

A. Warranty and Guarantee shall be as specified in Section 11000 – Equipment General Provisions.

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

- A. Submersible axial flow pumps (propeller) shall be Xylem Flygt PL 7030 Series or equal.
- B. Pump manufacturer shall have submersible pumps of comparable design and comparable capacity in successful operation for a minimum of ten years.

2.02 GENERAL DESCRIPTION

A. Identification

Location	Victoria Park Station
Equipment Number	P-1 P-2
Quantity	2

B. Operating Conditions

Duty	Intermittent
Drive	Constant Speed
Ambient environment	Outdoors
Ambient temperature (Fahrenheit)	40 to 100
Ambient relative humidity (%)	0 to 100
Fluid service	Stormwater (Screened)
Fluid temperature (Fahrenheit)	70 to 85
Minimum available NPSH (ft)	39.87
Maximum size of spheres to pass (inches diameter)	N/A

C. Performance Requirements

Pump Type	Axial Flow
Primary Design Point	8,143 gpm @ 9.61 feet TDH
Hydraulic Performance Acceptance Grade	2B
Minimum Overall Efficiency at Primary Design Point (%)	66
Secondary Design Point	8,795 gpm @ 6.62 feet TDH
Minimum Overall Efficiency at Secondary Design Point (%)	56
Maximum NPSH required (ft)	21
Maximum pump speed (rpm)	1,165
Nominal motor size (hp)	38

3

D. Pump Dimensions

Nominal Impeller Diameter (mm)	331
Nominal Column Diameter (in)	20
Column Length	As required
Nominal Discharge Flange Diameter (in)	27.50

Pump dimensions may vary by manufacturer. The Contractor is responsible for adjusting piping and providing necessary reducers and fittings to install the pumps furnished in the piping arrangement shown on the Drawings. Contractor shall submit pipe layout drawings and schedule with shop drawings for pumps. All adjustments to piping and any required adjustments to the structure shall be included in the Contractor's bid price.

2.03 MATERIALS

- A. Pump Design The discharge column shall be permanently installed in the wet well and removable from the top slab by unbolting or supported from the sump floor as recommended by the manufacturer. The pump shall be automatically and firmly connected to the discharge column when lowered down the discharge column. The connection shall prohibit rotational movement of the pump/motor within the discharge column. The pump shall be easily removed from the discharge column for inspection or service without the need to enter the wet well. The pumps shall not require the use of any bolts, nuts, or fasteners to the discharge column. The pump manufacturer shall provide stiffening and guiding webs at the pump support seat to ensure concentric positioning of the pump within the discharge column. The pump assembly shall be designed to be set into an opening in the top slab or floor of the pump station and be grouted and bolted to that top slab or sump floor which shall support the entire weight of the pump and discharge column assembly. The pump and column assembly shall be designed with sufficient mechanical stiffness such that vibration levels are within the manufacturer's tolerances.
- B. Pump casing shall be made of close grained cast iron conforming to ASTM A48, Class 35B and shall provide smooth unobstructed passages large enough to pass solids of the specified size. All exposed nuts and bolts shall be Type 316 stainless steel.
- C. Impellers: Impellers shall be stainless steel and shall be statically, hydraulically, and dynamically balanced.
 - a. Propellers for propeller pumps shall be 3 or 4 vane axial flow design, cast of ASTM A-743 CF8M stainless steel. Propeller blades shall be self-cleaning. A replaceable wear ring/inlet cone shall be installed in the pump housing to provide sealing between the pump housing and propeller.
 - b. Impellers for axial flow pumps shall be of a multi-vaned, double shrouded, non-clogging design. A wear ring system shall be used to provide sealing between the volute and suction inlet of the impeller. Wear rings shall be heat shrunk fitted onto the suction inlet of the impeller.

- D. Pump Shaft: Pump and motor shaft shall be a solid, continuous shaft of Type 431 or Type 410 stainless steel, minimum, and shall be completely isolated from the pumped liquid. Shaft size shall be as recommended by the pump manufacturer, suitable for the specified operating conditions.
- E. Sealing System: Each pump shall be provided with a tandem mechanical shaft seal system consisting of two independent seal assemblies. Seals shall operate in a lubricant reservoir which is easily accessible from the exterior of the unit. Seals shall not rely upon pumped media for lubrication. Complete manufacturer information for seals shall be submitted in accordance with Section 01300 Submittals. Seal lubricant shall be non-hazardous.
- F. Pump Column: Pump column/enclosing tubes shall be Type 316 stainless steel with a minimum wall thickness of 0.375 inches and shall be fabricated by the pump manufacturer or supplier. Column/tube sections shall be flanged at each end with machined faces to ensure alignment. The pump manufacturer shall provide Type 316 stainless steel intermediate column supports and hardware as required or as shown on the drawings.
- G. Formed Suction Inlet: Where shown on the drawings, the Contractor shall provide a formed suction inlet for each pump. The formed suction inlet shall be designed by the pump manufacturer and shall be Type 316 stainless steel. The formed suction inlet shall be designed to support all static and dynamic loads of the pump, motor, discharge head, and column assembly for operation with vibration within the Manufacturer's tolerances. The formed suction inlet shall be designed to be mounted to the concrete surface of the sump floor. All mounting hardware including supports, braces, and anchor bolts shall be designed and provided by the pump manufacturers and shall be Type 316 stainless steel.
- H. Discharge Head: Discharge head shall be Type 316 stainless steel and shall be fabricated by the pump manufacturer as part of the column assembly guide tube. Discharge heads shall be as shown on the Drawings and shall have an ANSI Standard flat faced 125-pound flange at the discharge connection. A stainless-steel cover with rubber gasket shall be provided that bolts to the top of the discharge head. The discharge head shall be provided with sufficient stiffeners and reinforcement as required to withstand thrust and resist movement. The discharge head shall be provided with lifting bolts and eye lugs for installation and maintenance. When suspended from the top slab or were shown on the drawings, sole plates shall be provided for mounting on a concrete surface that the pump assembly shall be inserted into and fastened to so that the pump assembly may be removed later for service or replacement. Sole plates shall be Type 316SS and shall be designed to support all static and dynamic loads of the pump, motor, discharge head, and column assembly. All mounting hardware for base plates (including anchor bolts) shall be designed and provided by the pump manufacturer and shall be Type 316 stainless steel. Sole plates shall be drilled and tapped to match discharge head.
- Installation of the pumps shall be performed after the sole plate is located and laser leveled to within 0.001 inch from corner to corner in both directions, grouted and cured for a minimum of seven days. The pump manufacturer or its authorized service representative shall provide an inspection report for review and approval to the Engineer prior to setting the remainder of the equipment.

- J. Bearings shall be oil or grease lubricated with provisions for the addition or draining of lubricant. The bearings shall be designed for continuous heavy duty loads and for both axial and radial thrust loads. Bearings shall have a minimum ABMA L-10 life of 50,000 hours under worst possible operating conditions.
- K. Bearing housing shall be constructed of cast iron, ASTM A48, Class 30 designed to provide a fully enclosed bearing housing.

2.04 ELECTRICAL REQUIREMENTS

A. Cables

- Pump shall be furnished with integrally mounted flexible power and control cables for connection to the local disconnect switch, terminal junction box, or control panel, as shown on the Drawings. Pump manufacturer shall be responsible for reviewing the electrical drawings as necessary to determine the required cable length. All pumps for the same pumping application shall be provided with the same length of cable. No splices shall be allowed unless specifically indicated on the Drawings. Cable length shall be verified with the Engineer.
- 2. Cables shall be suitable for submersible pump application. The outer jacket shall be oil resistant chlorinated polyethylene rubber. Conductors shall be copper and shall be insulated with ethylene-propylene rubber (EPR). Filler and conductor separator materials shall be of non-wicking vulcanized rubber.
- 3. Cables shall be rated 600 volts and 90°C (194°F) with a 40°C (104°F) ambient and shall be sized according to NEC and ICEA or IEC standards.

B. Cable Entry

- 1. The pump manufacturer shall provide a cable protection and suspension system for all installations within the tube. Cable installation shall prevent contact with any surfaces which may abrade outer jacket of the cable.
- 2. The cable entry water seal design shall ensure a watertight and submersible seal at the pump without specific torque requirements. The cable entry shall be comprised of cylindrical elastomer grommets, flanked by stainless steel washers all having a close tolerance fit against the cable outside diameter and the entry inside diameter. The grommets shall be compressed by the entry body containing a strain relief function. The cable entry junction chamber and motor shall be separated by a stator lead sealing gland or terminal board, which shall isolate gaining access through the pump top. The junction chamber containing the terminal board shall be sealed from the motor by an elastomer compression seal O-ring. Connection between the cable conductors and stator leads shall be made with threaded compressed type binding post permanently affixed to the terminal board and be leak proof. Each pump shall be equipped with separate terminal board that totally isolates the incoming power supply from the pump motor. Alternate cable entry system shall be approved by Engineer.

3. As an acceptable alternate pump cable entry seal, cable leads shall enter at the top of the motor and shall allow the cable-to-motor connection to be accomplished in the field without soldering. All power and control lead wires shall be double sealed as they enter the motor in such a manner that cable-wicking will not occur. This sealing system shall consist of a rubber grommet followed by epoxy that is high in adhesive qualities and has a low coefficient of expansion. Each conductor shall have a small section of insulation removed to establish a window area of bare wire and each wire shall be untwisted and surrounded by epoxy potting material. A cable strain relief mechanism shall be an integral part of the sealing system. The cable sealing system shall be capable of withstanding a cable assembly pull test as required by Underwriters Laboratories. Power and control leads shall be terminated on a sealed terminal board.

C. Motor Requirements

Rating	460V, 3ph, 60 Hz
Insulation	Class H
Temperature	40° C
Inverter Duty	Yes
Service Factor	1.15
Leak Detection Switches	Float Leakage Sensor at bottom of stator housing.
Motor Winding Temperature Switches	Thermal Sensor in each winding and paired as one sensor lead out of the pump.

- D. The pump motor shall be a squirrel-cage induction type, housed in an air-filled watertight chamber. The stator winding and stator leads shall be moisture resistant. The use of bolts, pins, or other fastening devices requiring penetration of the stator housing shall not be allowed.
- E. The motor shall be guaranteed for continuous submersible duty, capable of sustaining a minimum of fifteen (15) full voltage starts per hour without overheating.
- F. The motor shall be provided with pre-lubricated radial and thrust bearings which are designed to carry the entire load which may be imposed upon it under all operating conditions.
- G. All motors shall be of nationally known manufacture, shall be housed in enclosures specifically designed for submersible pump application.

- H. Three thermal switches shall be embedded in the stator windings, one per phase, all wired in series. The temperature switches shall be normally closed and shall open upon a high stator temperature condition.
- I. A float switch-type leakage sensor or moisture intrusion switch shall be installed in the oil-seal chamber or motor housing for leak detection. The resistance across the float switch shall change when the liquid in the oil-seal chamber rises beyond the level prescribed by the pump manufacturer. Float switch and thermal switches shall be wired in series inside the pump. Moisture intrusion switches shall be moisture absorbing, expansion type that open when moisture infiltrates the pump motor cavity, preventing the pump from operating and providing an alarm.
- J. The motor shall be cooled by the flow of the pumped medium along the stator housing during operation. A water jacket or external cooling system shall not be accepted.
- K. Motor horsepower shall be sufficient so that the pump is non-overloading throughout its entire performance curve.
- L. In addition to the requirements prescribed above, the following shall be provided for all two (2) pumps at the Victoria Park's Pump Station.
 - 1. One PT100 RTD for monitoring lower bearing temperature.
 - 2. One PT100 RTD for monitoring stator temperature.

2.05 PUMP MONITORING AND CONTROL

- A. Furnish pump monitoring relay with each pump for pump over-temperature and leakage monitoring. Operating principle shall be current sensing. Relay shall be capable of detecting pump leakage and over-temperature conditions independently, using a single pair of sensor wires.
- B. Furnish relay with a pair of Form C relay contacts, each rated 5A at 250VAC. One relay contact shall operate upon an over-temperature condition. The other shall operate upon detection of a leak. LED Indicating lights for over-temperature and for leakage shall illuminate in response to the corresponding fault.
- C. After detection of a fault, relay shall remain in the tripped condition until manually reset by the operator. Manual reset shall be via remote input contact closure.
- D. Relay shall be suitable for operating on a 120VAC, 60hz power supply. If accommodations for 24VAC, 60 Hz power supply are required, they shall be provided by Contractor and included in bid price.
- E. Pump monitoring system shall be Mini CAS II or MAS 711 as manufactured by Flygt, or equal.
- F. Pump vendor shall furnish pump starter vendor with monitoring relay for installation inside pump starter. Pump starters shall be furnished under Division 16.

2.06 FACTORY COATINGS

A. Unless specified as stainless steel, all interior and exterior surfaces of pump columns and discharge elbows and the exterior of the pump/motor assembly shall be painted in accordance with the requirements of the Section 09900 – Painting.

2.07 SPARE PARTS

- A. Spare parts shall be provided in accordance with Section 11000 Equipment General Provisions.
- B. The following spare parts shall be furnished for each pump:
 - 1. One (1) impeller/propeller (trimmed as required to meet duty conditions)
 - 2. One (1) set of wear rings
 - 3. One (1) complete set of upper and lower mechanical seals or cartridge seals

PART 3 - EXECUTION

3.01 MANUFACTURER'S FIELD SERVICES

A. The services of a qualified manufacturer's technical representative shall be provided in accordance with Section 11000 – Equipment General Provisions. Field services shall include the following site visits:

Service	Number of Trips	Number of Days per Trip
Installation and Testing	1	1
Startup and Training	1	2

- END OF SECTION -

SECTION 15000 BASIC MECHANICAL REQUIREMENTS

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The CONTRACTOR shall furnish and install to the required line and grade, all piping together with all fittings and appurtenances, required for a complete installation. All piping located outside the face of structures or building foundations and all piping embedded in concrete within a structure or foundation shall be considered exterior piping.
- B. The CONTRACTOR shall furnish and install fittings, couplings, connections, sleeves, adapters, harness rods and closure pieces as required to connect pipelines of dissimilar materials and/or sizes herein included under this Section and other concurrent Contracts for a complete installation.
- C. The CONTRACTOR shall furnish all labor, materials, equipment, tools, and services required for the furnishing, installation and testing of all piping as shown on the Drawings, specified in this Section and required for the Work. Piping shall be furnished and installed of the material, sizes, classes, and at the locations shown on the Drawings and/or designated in this Section. Piping shall include all fittings, adapter pieces, couplings, closure pieces, harnessing rods, hardware, bolts, gaskets, wall sleeves, wall pipes, hangers, supports, and other associated appurtenances for required connections to equipment, valves, or structures for a complete installation.
- D. Piping assemblies under 4-inch size shall be generally supported on walls and ceilings, unless otherwise shown on the Drawings or ordered by the ENGINEER, being kept clear of openings and positioned above "headroom" space. Where practical, such piping shall be run in neat clusters, plumb and level along walls, and parallel to overhead beams.
- E. The CONTRACTOR shall provide taps on piping where required or shown on the Drawings. Where pipe or fitting wall thicknesses are insufficient to provide the required number of threads, a boss or pipe saddle shall be installed.
- F. The work shall include, but not be limited to, the following:
 - 1. Connections to existing pipelines.
 - 2. Test excavations necessary to locate or verify existing pipe and appurtenances.
 - 3. Installation of all new pipe and materials required for a complete installation.
 - 4. Cleaning, testing and disinfecting as required.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Division 1 General Requirements
- B. Division 2 Sitework
- C. Division 5 Metals
- D. Division 9 Finishes
- E. Division 11 Equipment
- F. Division 16 Electrical

1.03 MATERIAL CERTIFICATION AND SHOP DRAWINGS

- A. The CONTRACTOR shall furnish to the CITY (through the ENGINEER) a Material Certification stating that the pipe materials and specials furnished under this Section conform to all applicable provisions of the corresponding Specifications. Specifically, the Certification shall state compliance with the applicable standards (ASTM, AWWA, etc.) for fabrication and testing.
- B. Shop Drawings for major piping (2 inches in diameter and greater) shall be prepared and submitted in accordance with the Section entitled "Submittals." In addition to the requirements of the Section entitled "Submittals," the CONTRACTOR shall submit laying schedules and detailed Drawings in plan and profile for all piping as specified and shown on the Drawings.
- C. Shop Drawings shall include, but not be limited to, complete piping layout, pipe material, sizes, class, locations, necessary dimensions, elevations, supports, hanger details, pipe joints, and the details of fittings including methods of joint restraint. No fabrication or installation shall begin until Shop Drawings are approved by the ENGINEER.

PART 2 - PRODUCTS

2.01 GENERAL

- A. All specials and every length of pipe shall be marked with the manufacturer's name or trademark, size, class, and the date of manufacture. Special care in handling shall be exercised during delivery, distribution, and storage of pipe to avoid damage and unnecessary stresses. Damaged pipe will be rejected and shall be replaced at the CONTRACTOR's expense. Pipe and specials stored prior to use shall be stored in such a manner as to keep the interior free from dirt and foreign matter.
- B. Testing of pipe before installation shall be as described in the corresponding ASTM or AWWA Specifications and in the applicable standard specifications listed in the following sections. Testing after the pipe is installed shall be as specified in the Section entitled "Pipeline Testing and Disinfection".
- C. All buried exterior piping shall have restrained joints for thrust protection unless otherwise specified or shown on the drawings. All exposed exterior piping shall have flanged joints, unless otherwise specified or shown on the drawings.
- D. The CONTRACTOR shall verify existing above ground and buried piping tie-in connections before fabricating new piping assemblies. The CONTRACTOR shall verify size, type, and location of all existing buried piping and appurtenances by excavating test pits as required of all buried connections and crossings which may affect the CONTRACTOR's work prior to ordering pipe and fittings to determine sufficient information for ordering materials. The CONTRACTOR shall take whatever measurements that are required to complete the work as shown or specified.
- E. Before setting wall sleeves, pipes, castings and pipes to be cast in place, the CONTRACTOR shall check the Drawings and equipment manufacturer's drawings which may have a direct bearing on the pipe locations.

- F. Piping shall be attached to pumps, valves, equipment, etc., in accordance with the respective manufacturers' recommendations. This includes the use of flexible connectors as required.
- G. All changes in directions or elevations shall be made with fittings, unless otherwise shown.

2.02 WALL PIPES

A. Where wall sleeves or wall pipes occur in walls that are continuously wet on one or both sides, they shall have water stop flanges at the center of the casting or as shown on the Drawings. Ends of wall pipes shall be flange, mechanical joint, plain end, or bell as shown on the Drawings, or as required for connection to the piping. Wall pipes shall be of the same material as the piping that they are connected to. If welded waterstop flanges are employed, welds shall be 360 degree continuous on both sides of flange. Unless otherwise shown on the Drawings, waterstop flanges shall conform to the minimum dimensions shown below:

	Waterstop	Waterstop
Pipe Size	Flange Diameter	Flange Thickness
4 inch - 12 inch	OD + 3.10 inch	0.50 inch
14 inch - 24 inch	OD + 4.15 inch	0.75 inch
30 inch - 36 inch	OD + 4.50 inch	1.00 inch
42 inch - 48 inch	OD + 5.00 inch	1.25 inch
54 inch	OD + 5.90 inch	1.50 inch

2.03 SLEEVES

- A. Unless shown otherwise, all piping passing through walls and floors shall be installed in sleeves or wall castings accurately located before concrete is poured, or placed in position during construction of masonry walls. Sleeves passing through floors shall extend from the bottom of the floor to a point 3 inches above the finished floor, unless shown otherwise. Water stop flanges are required on all sleeves located in floors or walls which are continually wet or under hydrostatic pressure on one or both sides of the floor or wall.
- B. Sleeves shall be cast iron, black steel pipe, or fabricated steel in accordance with details shown on the Drawings. If not shown on the Drawings, the CONTRACTOR shall submit to the ENGINEER the details of sleeves the CONTRACTOR proposes to install; and no fabrication or installation thereof shall take place until the ENGINEER's approval is obtained. Steel sleeves shall be fabricated of structural steel plate in accordance with the standards and procedures of AISC and AWS. Steel sleeve surfaces shall receive a commercial sandblast cleaning and then be shop painted in accordance with Section 09900 Painting.
- C. When shown on the Drawings or otherwise required, the annular space between the installed piping and sleeve shall be completely sealed against a maximum hydrostatic pressure of 20 psig. Seals shall be mechanically interlocked, solid rubber links, trade name "Link-Seal", as manufactured by the Thunderline Corp., Wayne, Michigan, or equal. Rubber link, seal-type, size, and installation thereof, shall be in strict accordance with the manufacturer's recommendations. For non-fire rated walls and floors, pressure plate shall

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

be glass reinforced nylon plastic with EPDM rubber seal and 304 stainless steel bolts and nuts. For fire rated walls and floors, two independent seals shall be provided consisting of low carbon steel, zinc galvanized pressure plates, silicon rubber seals and low carbon steel, zinc galvanized bolts and nuts.

D. Cast iron mechanical joint adapter sleeves shall be Clow # 1429, as manufactured by the Clow Corp., or equal. Mechanical joint adapter sleeves shall be provided with suitable gasket, follower ring, and bolts to effect a proper seal. In general, sleeves installed in walls, floors, or roofs against one side of which will develop a hydrostatic pressure, or through which leakage of liquid will occur, shall be so sealed. If welded waterstop flanges are employed, welds shall be 360 degree continuous on both sides of flange.

2.04 SOLID SLEEVE COUPLINGS

A. Solid sleeve couplings shall be used to connect buried service piping where shown on the Drawings. Solid sleeves shall be ductile iron, long body and shall conform to the requirements of ANSI A21.10 (AWWA C110). Unless otherwise shown or specified, solid sleeve couplings shall be Style A11760 as manufactured by American Cast Iron Pipe Co., or equal.

2.05 FLEXIBLE COUPLINGS

A. Flexible couplings shall be as manufactured by the Red Valve Company or equal and shall consist of a molded reinforced fabric of cotton and natural rubber. Galvanized steel retaining rings shall be furnished. End connections shall match ANSI 125 pound flanges with a minimum pressure rating of 140 psi.

2.06 SLEEVE TYPE COUPLINGS

- A. Sleeve type, flexible couplings shall be furnished and installed where shown on the Drawings or otherwise required to resist internal operating pressures. In addition to that specified herein, harnessed, sleeve type flexible couplings shall be provided on all exposed pipe 3 inches and larger in diameter that spans any expansion joint in a building or structure.
- B. Materials shall be of high strength steel and couplings shall be rated for the same pressures as the connecting piping.
- C. Gaskets shall be rubber. Bolts and nuts shall be alloy steel, corrosion-resistant and prime coated.
- D. Couplings shall be shop primed with a premium quality primer compatible with the painting system specified in Section 09900 Painting. Field painting of wetted area shall be done prior to installation.

E. Harnessing

- 1. Harness couplings to adjacent flanges as shown, specified or otherwise required to restrain all pressure piping.
- 2. Dimensions, sizes, spacing and materials for lugs, tie rods, washers, and nuts shall conform to the standards for the pipe size, and design pressure specified.

- 3. No less than two (2) bolts shall be furnished for each coupling.
- 4. Tie bolts, nuts and washers shall be ASTM A 193, Grade B7 steel or better and as a minimum shall be hot dip galvanized.
- 5. Harness rods shall have lengths less than 10 feet between adjacent flanged joints on fittings and as a minimum shall be hot dip galvanized.
- F. Couplings shall be as manufactured by Dresser Industries, Style 38, or equal as required and shown on the Drawings. All couplings shall be provided without interior pipe stop.

2.07 FLANGED ADAPTERS

- A. Flanged adapters shall be furnished as required and as shown on the Drawings.
- B. All flanged adapters, 12 inches in diameter and smaller, except as shown on the Drawings or directed by the ENGINEER, shall be locking type flanged adapters.
- C. Pressure and service shall be the same as connected piping.
- D. Materials shall be cast iron for pipes up to 12 inch diameter and high strength steel for pipes larger than 12 inch diameter.
- E. Flanged adapters shall be shop primed with a premium quality primer compatible with the paint system specified in Section 09900 Painting. Field painting of wetted area shall be done prior to installation.
- F. Bolts and nuts shall be alloy steel, corrosion-resistant and prime coated.
- G. Where identified on the Drawings, flanged coupling adapters shall be harnessed by tying the adapter to the nearest pipe joint flange using threaded rods and rod tabs. The threaded rods, rod tabs, nuts, bolts and washers shall be as shown on the Drawings and as a minimum shall be hot dip galvanized.
- H. Flanged adapters shall be as manufactured by Dresser Industries, Style 127 or 128, Smith Blair Corporation, or equal.

2.08 MECHANICAL COUPLINGS (SPLIT TYPE – GROOVED PIPE)

- A. Mechanical couplings (split type-grooved pipe) shall be furnished as specified or shown on the Drawings.
- B. Materials shall be of ductile iron and couplings shall be rated for 150 psi or higher.
- C. Gaskets shall be rubber of the type recommended by the manufacturer for the specified service. Bolts and nuts shall be heat treated carbon steel track bolts and shall be plated.
- D. The exterior service of couplings shall be painted in accordance with Section 09900 Painting.
- E. Couplings shall be as manufactured by Victaulic Company of America, Style 31 for ductile iron pipe, Style 77 for IPS steel pipe, or equal, unless otherwise specified.

2.09 UNIONS

- A. For ductile iron, carbon steel, and grey cast iron pipes assembled with threaded joints and malleable iron fittings, unions shall conform to ANSI B16.39.
- B. For copper piping, unions shall have ground joints and conform to ANSI B16.18.
- C. For PVC and CPVC piping, unions shall be socket weld type with Viton O-ring.

2.10 THERMOPLASTIC TUBING AND FITTINGS

- A. Thermoplastic tubing shall be manufactured from polyallomor tubing. Tubing shall be protected from ultraviolet radiation degradation with a black coating or integral color conforming to ASTM D-1248, Type 1, Class C, Category 3. Fittings and connectors used with thermoplastic tubing shall be the flareless tube type constructed of brass conforming to SAE CA377, SAE CA360 or equal. Brass sleeves shall be used.
- B. Assembly of the thermoplastic tubing shall consist of pushing the tubing into the fitting and hand tightening the nut with final tightening with a wrench. Care shall be taken not to overtighten the nut. Plastic tube racks and bend holders shall be provided for holding the tubing in position. Needle valves used with thermoplastic tubing shall be the globe type constructed with a brass body, stem and seat and Buna-N "O"-ring seals. Installation shall be in accordance with the manufacturer's recommendations. Thermoplastic tubing, shall be the Impolene (polyallomor) system and needle valves, fittings and connectors shall be the Poly-Flo with 261 UB Universal Nut and Sleeve system as manufactured by Imperial Eastman, or equal.

PART 3 - EXECUTION

3.01 INSTALLATION

- All piping shall be installed by skilled workers and in accordance with the best standard practice for piping installation as shown on the Drawings, specified or recommended by the pipe manufacturer. Proper tools and appliances for the safe and convenient handling and installing of the pipe and fittings shall be used. Great care shall be taken to prevent any pipe coating from being damaged on the inside or outside of the pipe and fittings. All pieces shall be carefully examined for defects, and no piece shall be installed which is known to be cracked, damaged, or otherwise defective. If any defective pieces should be discovered after having been installed, it shall be removed and replaced with a sound one in a satisfactory manner by the CONTRACTOR and at their own expense. Pipe and fittings shall be thoroughly cleaned before they are installed and shall be kept clean until they are accepted in the complete work. All piping connections to equipment shall be provided with unions or coupling flanges located so that piping may be readily dismantled from the equipment. At certain applications, Dresser, Victaulic, or equal, couplings may also be used. All piping shall be installed in such a manner that it will be free to expand and contract without injury to itself or to structures and equipment to which it is connected. All piping shall be erected to accurate lines and grades with no abrupt changes in line or grade and shall be supported and braced against movement, temporary, or permanent. All exposed piping shall be installed with vertical and horizontal angles properly related to adjoining surfaces or pipes to give the appearance of good quality. Unless otherwise shown or approved, provided a minimum headroom clearance under all piping of 7 feet 6 inches.
- B. Unless otherwise shown or specified, all waste and vent piping shall pitch uniformly at a 1/4-inch per foot grade and accessible cleanouts shall be furnished and installed as shown and as required by local building codes. Installed length of waste and vent piping shall be determined from field measurements in lieu of the Drawings.
- C. All excavation shall be made in such a manner and to such widths as will provide ample room for properly installing the pipe and permit thorough compaction of backfill around the pipe. The minimum trench widths shall be in strict accordance with the "Trench Width

Excavation Limits" as shown on the Drawings. All excavation and trenching shall be done in strict accordance with these specifications and all applicable parts of the OSHA Regulations, 29CFR 1926, Subpart P.

- D. All excavation required by this contract shall be unclassified. No additional payment will be made for rock excavation required for the installation of pipe or structures shown on the drawings.
- E. Enlargements of the trench shall be made as needed to give ample space for operations at pipe joints. The width of the trench shall be limited to the maximum dimensions shown on the Drawings, except where a wider trench is needed for the installation of and work within sheeting and bracing. Except where otherwise specified, excavation slopes shall be flat enough to avoid slides which will cause disturbance of the subgrade, damage to adjacent areas, or endanger the lives or safety of persons in the vicinity.
- F. Hand excavation shall be employed wherever, in the opinion of the ENGINEER, it is necessary for the protection of existing utilities, poles, trees, pavements, or obstructions.
- G. No greater length of trench in any location shall be left open, in advance of pipe laying, than shall be authorized or directed by the ENGINEER and, in general, such length shall be limited to approximately 100 feet. The CONTRACTOR shall excavate the trenches to the full depth, width and grade indicated on the Drawings including the relevant requirements for bedding. The trench bottoms shall then be examined by the ENGINEER as to the condition and bearing value before any pipe is laid or bedding is placed.
- H. No pressure testing shall be performed until the pipe has been properly backfilled in place. All pipe passing through walls and/or floors shall be provided with wall pipes or sleeves in accordance with the specifications and the details shown on the Drawings. All wall pipes shall be of ductile iron and shall have a water stop located in the center of the wall. Each wall pipe shall be of the same class, thickness, and interior coating as the piping to which it is joined. All buried wall pipes shall have a coal tar outside coating on exposed surfaces.
- I. Joint deflection shall not exceed 75 percent of the manufacturers recommended deflection. Excavation and backfilling shall conform to the requirements of Division 2, and as specified herein. Maximum trench widths shall conform to the Trench Width Excavation Limits shown on the Drawings. All exposed, submerged, and buried piping shall be adequately supported and braced by means of hangers, concrete piers, pipe supports, or otherwise as may be required by the location.
- J. Following proper preparation of the trench subgrade, pipe and fittings shall be carefully lowered into the trench so as to prevent dirt and other foreign substances from gaining entrance into the pipe and fittings. Proper facilities shall be provided for lowering sections of pipe into trenches. Under no circumstances shall any of the materials be dropped or dumped into the trench.
- K. Water shall be kept out of the trench until jointing and backfilling are completed. When work is not in progress, open ends of pipe, fittings, and valves shall be securely closed so that no water, earth, or other substance will enter the pipes, fitting, or valves. Pipe ends left for future connections shall be valved, plugged, or capped, and anchored as required.

- L. All piping shall be installed in such a manner that it will be free to expand and/or contract without injury to itself or to structures and equipment to which it is connected. All piping shall be erected to accurate lines and grades with no abrupt changes in line or grade and shall be supported and braced against movement, temporary, or permanent. All exposed piping shall be installed with vertical and horizontal angles properly related to adjoining surfaces or pipes to give the appearance of good quality. Pipes crossing within a vertical distance of less than or equal to one (1) foot shall be encased and supported with concrete at the point of crossing to prevent damage to the adjacent pipes as shown on the Drawings.
- M. The full length of each section of pipe shall rest solidly upon the bed of the trench, with recesses excavated to accommodate bells, couplings, joints, and fittings. Before joints are made, each pipe shall be well bedded on a solid foundation; and no pipe shall be brought into position until the preceding length has been thoroughly bedded and secured in place. Pipe that has the grade or joint disturbed after laying shall be taken up and relaid by the CONTRACTOR at their own expense. Pipe shall not be laid in water or when trench conditions are unsuitable for work.
- N. Proper and suitable tools and appliances for the safe convenient handling and laying of pipe shall be used and shall in general agree with manufacturer's recommendations.
- O. At the close of each work day the end of the pipeline shall be tightly sealed with a cap or plug so that no water, dirt, or other foreign substance may enter the pipeline, and this plug shall be kept in place until pipe laying is resumed.
- P. During the laying of pipe, each pipe manufacturer shall provide their own supervisor to instruct the CONTRACTOR's pipe laying personnel in the correct procedure to be followed.
- Q. Ordinarily only full lengths of pipe (as furnished by the pipe manufacturer) shall be used exceptions: closure pieces at maintenance holes and areas where joint deflection is required.
- R. For gravity sewer installations, the CONTRACTOR shall use a laser device to maintain the trench and pipe alignment. The laser device shall be re-checked for correct elevation and pipe alignment prior to pipe installation if the device is left in the pipe overnight. Corrected invert elevations at each maintenance hole and any adjustments will be coordinated and approved by the ENGINEER.
- S. All piping shall have type "a" bedding as shown on the drawings, unless otherwise specified herein or indicated on the drawings.
- 3.02 REINFORCED CONCRETE PIPE, CONCRETE CULVERT, AND DRAIN PIPE
 - A. The laying of reinforced concrete pipe shall conform to the applicable sections of the Concrete Pipe Handbook as published by the American Concrete Pipe Association.
- 3.03 DUCTILE IRON PIPE
 - A. Ductile iron pipe (DIP) shall be installed in accordance with the requirements of the Ductile Iron Pipe Handbook published by the Ductile Iron Pipe Research Association, and AWWA C600.

- B. Where it is necessary to cut ductile iron pipe in the field, such cuts shall be made carefully in a neat professional manner using approved methods to produce a clean square cut. The outside of the cut end shall be conditioned for use by filing or grinding a small taper, at an angle of approximately 30 degrees.
- C. UNLESS OTHERWISE APPROVED BY THE ENGINEER, FIELD WELDING OF DUCTILE IRON WILL NOT BE PERMITTED.

3.04 PVC/CPVC AND HDPE PIPE

- A. Polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC) and High Density Polyethylene (HDPE) pipe shall be laid and joints assembled according to the respective manufacturer's recommendation. PVC pipe installation shall comply with applicable sections of the Uni-Bell PVC Pipe Association Recommended Standard Specifications.
- B. Plastic piping shall not be installed when the temperature is less than 60 degrees F except as otherwise recommended by the manufacturer and approved by the ENGINEER.

3.05 CARBON AND STAINLESS STEEL PIPE

- A. Installation of steel pipe shall be by skilled workers and shall conform to the applicable sections of AWWA Manual M-11. Joints for steel piping shall be either screwed, welded, or flanged as shown on the Drawings or as specified.
- B. Welding in the field shall be performed only when requested on the shop drawings and permitted by the ENGINEER for carbon steel pipe. No welding of stainless steel pipe shall be allowed in the field. All field welds shall be radiographically inspected.
- C. Installation of the steel casing pipe shall be by skilled workers and in accordance with the best standard practice for steel pipe installation. Joints for steel casing pipe shall be butt welded.
 - 1. The boring equipment to be used for installing the jacked casing shall be of such size and capacity to allow the boring to proceed in a safe and expeditious manner. The installation of the casing and boring of the hole shall be done simultaneously to avoid cave-ins or settlement and for safety of traffic above.
 - 2. The CONTRACTOR shall check the vertical and horizontal alignment of the casing by survey instrument at least once during each four feet of advance, or as directed by the ENGINEER. Pits shall be well sheeted and braced as necessary for safe and adequate access for workers, inspectors and materials and shall be of a size suitable to equipment and material handling requirements.
 - 3. Under no conditions shall jetting or wet boring of encasement under pavement be allowed.
 - 4. After installation of the carrier pipe, each end of the casing pipe shall be made watertight with a brick masonry bulkhead. In addition, a Class B concrete cradle shall be provided from each end of the bulkhead to the first pipe joint outside of the bulkhead.

3.06 COPPER PIPE

- A. Installation of copper pipe shall be by skilled workers in accordance with the manufacturer's recommendations. Use teflon tape at all fittings unless otherwise required for intended service. Install unions at the connections to each piece of equipment to allow removal of equipment without dismantling connecting piping.
- B. Wall sleeves shall be provided for all piping passing through exterior walls and shall be of the same material as the piping to which it is joined. All wall sleeves shall be provided with an acceptable waterstop.
- C. The CONTRACTOR shall provide hot and cold water mains with branches and risers complete from point indicated on the Drawings running to all fixtures and other outlets indicated. Mains and branches shall be run generally as shown on the Drawings. The CONTRACTOR shall provide all interior water piping, branches, and risers as shown on the Drawing and shall make connections to all plumbing fixtures, hose bibs, wall hydrants, and other points requiring water under this and other Divisions of the Specifications.
- D. All water mains and branches shall be pitched at least one (1) inch in twenty-five (25) feet toward fixtures. The piping installation shall be arranged so that the entire system can be drained through fixture supply connections.
- E. Unions shall be installed at the connections to each piece of equipment to allow for removal of equipment without dismantling connecting piping.
- F. Joints 1-1/4 inches and larger shall be made with silver solder. For joints less than 1-1/4 inches and all valves (regardless of size) use 95/5 solder. Soldered joints shall be prepared with a non-corrosive paste flux in accordance with manufacturer's instructions. All joints shall be thoroughly cleaned with emery cloth and reamed out before assembly. Acid core solder will not be permitted.

3.07 JOINTS IN PIPING

- A. Restrained joints shall be provided on all pipe joints as specified herein and shown on the Drawings. Restrained joints shall be made up similar to that for push-on joints.
- B. Push-on joints include a single rubber gasket which fits into the bell end of the pipe. The gasket shall be wiped clean, flexed and then placed in the socket. Any bulges in the gasket which might interfere with the entry of the plain end of the pipe shall be removed. A thin film of lubricant shall be applied to the gasket surface which will come into contact with the spigot end of the pipe. The lubricant shall be furnished by the pipe manufacturer. The plain end of the pipe, which is tapered for ease of assembly, shall be wiped clean and a thick film of lubricant applied to the outside. The pipe shall be aligned and carefully entered into the socket until it just makes contact with the gasket. The joint assembly shall be completed by entering the pipe past the gasket until it makes contact with the bottom of the socket. The pipe shall be pulled "home" with an approved jack assembly as recommended by the pipe manufacturer. If assembly is not accomplished by reasonable force, the plain end shall be removed and the condition corrected.
- C. Flanged joints shall be brought to exact alignment and all gaskets and bolts or stude inserted in their proper places. Bolts or stude shall be uniformly tightened around the joints.

Where stud bolts are used, the bolts shall be uniformly centered in the connections and equal pressure applied to each nut on the stud. Pipes in all lines subject to temperature changes shall be cut short and cold sprung into place to compensate for expansion when hot

- D. Mechanical joints shall be made up with gaskets, glands and bolts. When a joint is to be made up, the bell or socket and plain end shall be cleaned and washed with a solution of mild soap in water; the gland and gasket shall be slid onto the plain end and the end then entered into the socket until it is fully "home" on the centering ring. The gasket shall then be painted with soapy water and slid into position, followed by the gland. All bolts shall be inserted and made up hand tight and then tightened alternately to bring the gland into position evenly. Excessive tightening of the bolts shall be avoided. All nuts shall be pulled up using a torque wrench which will not permit unequal stresses in the bolts. Torque shall not exceed the recommendations of the manufacturer of the pipe and bolts for the various sizes. Care shall be taken to assure that the pipe remains fully "home" while the joint is being made. Joints shall conform to the applicable AWWA Specifications.
- E. Threaded and/or screwed joints shall have long tapered full depth threads to be made with the appropriate paste or jointing compound, depending on the type of fluid to be processed through the pipe. All pipe up to, and including 1-1/2-inches, shall be reamed to remove burr and stood on end and well pounded to remove scale and dirt. Wrenches on valves and fittings shall be applied directly over the joint being tightened. Not more than three pipe threads shall be exposed at each connection. Pipe, in all lines subject to temperature changes shall be cut short and cold sprung into place to compensate for expansion when hot. Joints in all piping used for chlorine gas lines shall be made up with a glycerine and litharge cement. Joints in plastic piping (PVC/CPVC) shall be laid and joints made with compounds recommended by the manufacturer. Installation shall conform to the requirements of ASTM D2774 and ASTM D2855. Unions required adjacent to valves and equipment.
- F. Soldered joints shall have the burrs removed and both the outside of pipe and the inside of fittings shall be thoroughly cleaned by proper tools recommended for that purpose. Flux shall be applied to both pipe and inside of fittings and the pipe placed into fittings and rotated to ensure equal distribution of flux. Joints shall be heated and solder applied until it shows uniformly around the end of joints between fitting and pipe. All joints shall be allowed to self-cool to prevent the chilling of solder. Combination flux and solder paste manufactured by a reputable manufacturer is acceptable. Unions required adjacent to valves and equipment.
- G. Welded joints shall be made by competent operators in a first class professional quality manner, in complete accordance with ANSI B31.1 and AWWA C206. Welding electrodes shall conform to ASTM A233, and welding rod shall conform to ASTM A251. Only skilled welders capable of meeting the qualification tests for the type of welding which they are performing shall be employed. Tests, if so required, shall be made at the expense of the CONTRACTOR, if so ordered by the ENGINEER. Unions shall be required adjacent to valves and equipment.
- H. Copper joints shall be thoroughly cleaned and the end of pipes uniformly flared by a suitable tool to the bevels of the fittings used. Wrenches shall be applied to the bodies of fittings where the joint is being made and in no case to a joint previously made. Dimensions of tubing and copper piping shall be in complete accordance with the fittings used. No flare

BASIC MECHANICAL
REQUIRE MENTS
Exhibit 1D
Page 1178 of 2050

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

joints shall be made on piping not suited for flare joints. Installations for propane gas shall be in accordance with NFPA 54 and/or 58.

- I. Solvent or adhesive welded joints in plastic piping shall be accomplished in strict accordance with the pipe manufacturer's recommendations, including necessary field cuttings, sanding of pipe ends, joint support during setting period, etc. Care shall be taken that no droppings or deposits of adhesive or material remain inside the assembled piping. Solvent or adhesive material shall be compatible with the pipe itself, being a product approved by the pipe manufacturer. Unions are required adjacent to valves and equipment. Sleeve-type expansion joints shall be supplied in exposed piping to permit 1 inch minimum of expansion per 100 feet of pipe length.
- J. Dielectric unions shall be installed wherever dissimilar metals are connected except for bronze or brass valves in ferrous piping. Unions shall be provided downstream of each valve with screwed connections. The CONTRACTOR shall provide screwed or flanged unions at each piece of equipment, where shown, and where necessary to install or dismantle piping.
- K. Eccentric reducers shall be installed where air or water pockets would otherwise occur in mains because of a reduction in pipe size.
- L. Joints in polypropylene and polyvinylidelene fluoride pipe shall be butt fusion weld. All butt welding shall follow the requirements of ASTM D-2657 and the manufacturer's recommendations.

3.08 PAINTING AND COLOR CODING SYSTEM

- A. All exposed piping specified shall be color coded in accordance with the CITY's standard color designation system for pipe recognition and in accordance with the Section entitled "Piping and Equipment Identification Systems." In the absence of a standard color designation system, the ENGINEER will establish a standard color designation for each piping service category from color charts submitted by the CONTRACTOR in compliance with the Section entitled "Painting."
- B. All piping specified in this Section shall be painted in accordance with the Section entitled "Painting," except as follows:
 - 1. Copper pipe.
 - 2. Stainless steel pipe. Flanges and supports or hangers shall be painted.

- END OF SECTION -

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 15006 DUCTILE IRON PIPE

PART 1 - GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish and install ductile iron pipe and all appurtenant Work, complete in place, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. All applicable sections of the Contract Documents
- 1.03 REFERENCED SPECIFICATIONS, CODES, AND STANDARDS
 - A. Commercial Standards:

AWWA C104 Cement Mortar Lining for Ductile Iron Pipe and Fittings For Water.

AWWA C110 Ductile-iron and Gray-Iron Fittings.

AWWA C111 Rubber-Gasket Joints for Ductile-Iron Pressure Pipe and Fittings.

AWWA C150 Thickness design of ductile iron pipe.

AWWA C151 Ductile-iron Pipe, Centrifugally Cast, For Water.

AWWA C600 Installation of Ductile-Iron Water Mains and Their Appurtenances.

1.04 SUBMITTALS

- A. Shop Drawings: The Contractor shall submit Shop Drawings of pipe and fittings in accordance with the requirements set forth in the Sections entitled "Basic Mechanical Requirements" and "Submittals."
- B. Contractor shall submit certification that all materials coming in contact with potable water comply with the requirements of NSF 61.

PART 2 - PRODUCTS

2.01 GENERAL

A. Pipe shall be centrifugally cast in metal molds or sand lined molds in accordance with AWWA C151 of grade 60-42-10 ductile iron. The above standard covers ductile iron pipe with nominal pipe sizes from three inches up to and including sixty-four inches in diameter. Working pressure shall be as specified herein.B. Wall Thickness

1. Buried Pipe:

- a. 30 inch diameter and greater shall be Pressure Class 300.
- b. 24 inch diameter and smaller shall be Pressure Class 350.

- 2. Flanged Pipe: Pipe wall thickness of threaded pipe for a flanged pipe end shall be minimum special thickness Class 53 from 4-inch to 54-inch and/or minimum Pressure Class 350 for 60-inch to 64-inch diameter pipe in accordance with AWWA C115.
- 3. Grooved Pipe: Grooved coupling pipe shall be special thickness Class 54, or greater if required by pipe manufacturer. Pipe groove dimensions shall be for rigid joints unless otherwise indicated on the drawings.

C. Joints

- 1. Ductile iron pipe above grade shall be flanged.
- 2. All pipe and fittings below grade shall be restrained joint type.
- 3. Mechanical and push-on type joints shall be in accordance with AWWA C111.
- 4. Flanges for flanged pipe shall be in accordance with AWWA C115, shall be ductile iron, shall be rated at 250 psi maximum working pressure, and shall be similar to flange Class 125 per ASME B16.1. Where shown on the Drawings, pipe and fittings shall be furnished with flanges similar to flange Class 250 per ASME B16.1. Fittings shall be provided with flanges having a bolt circle and bolt pattern the same as the adjacent pipe and/or mechanical devices. Joint materials shall be ANSI sized and approved and shall consist of hot dip galvanized carbon steel bolts and nuts and full faced gaskets, unless otherwise specified.
- 5. No raised face flanges shall be used. The raised faces shall be milled flat.
- 6. Flange gaskets shall be full face Toruseal gaskets by American Cast Iron Pipe Co., or FLANGE-TYTE gaskets by U.S. Pipe, or equal. Gaskets shall be nominal 1/8" thick SBR rubber.

D. Restrained Joints

- 1. All ductile iron pipe and fittings below grade shall be restrained joint.
- 2. Manufactured Proprietary Restrained Joint Piping: Restrained joint pipe shall be as specified in the City of Fort Lauderdale Department of Sustainable Development Engineering Division Shop Drawing Submittals and Approved Utility Product List provided in Appendix B.
- 3. Restrained Mechanical Joint Fittings: All mechanical joint fittings, valves and appurtenances shall be restrained as described herein. Restrained joint fittings shall be mechanical joint fittings with restraint assemblies such as Stargrip by Star Pipe Systems, Mega Lug by EBAA Iron, ONE LOK by Sigma, or approved equal. Manufacturers and model numbers shall be as specified in the City of Fort Lauderdale Department of Sustainable Development Engineering Division Shop Drawing Submittals and Approved Utility Product List provided in Appendix B. Use of this restraining system shall be approved by the Engineer for each application.

E. Fittings

 General: Fittings shall be manufactured in accordance with AWWA C110 or the manufacturer's standard. Fittings shall be as specified in the City of Fort Lauderdale Department of Sustainable Development Engineering Division Shop Drawing Submittals and Approved Utility Product List provided in Appendix B.

- 2. Pressure Rating: 350 psi minimum working pressure for 4- to 24-inch fittings and 250 psi minimum working pressure for 30- to 64-inch fittings.
- 3. Materials: Fittings shall be ductile iron.
- 4. Joints General: Fittings shall be either flanged, mechanical joint or manufactured proprietary restrained joint type as indicated on the Drawings and specified herein.
- 5. Flanged Joint Fittings: Above ground fittings shall be flanged.
- 6. Manufacturer Proprietary Restrained Joint Fittings: Unless otherwise indicated on the Drawings or specified herein, all below ground fittings 30 inches in diameter and greater shall be manufacturer proprietary restrained joint type.
- 7. Mechanical Joint Fittings: Underground ductile iron fittings 24 inches in diameter and less shall be mechanical joint type fittings.
- F. Pipe Lining and Coating General: Pipe linings and coatings shall be as follows:
 - 1. Buried Service: The piping manufacturer's standard asphaltic coating shall be applied prior to shipment to the exterior wall of buried pipe and fittings in accordance with AWWA C151.
 - 2. Above Ground Piping and Exposed Piping within Underground Vaults: A coating of rust inhibitive primer, compatible with the coating system specified in the Section entitled "Painting," shall be applied to the pipe exterior prior to shipment for piping that is above ground and exposed piping within vaults. Primer for pipe used for potable water main applications shall be compliant with NSF Standard 61.
 - 3. Cement-Mortar Lining: Pipe and fittings for potable water service shall be cement-lined and seal-coated in accordance with AWWA C104, Cement-Mortar Lining for Ductile-Iron Pipe and Fittings for Water.
 - 4. Protecto 401 Ceramic Epoxy Lining: The interior of all ductile iron pipe and fittings for wastewater services shall be lined with an epoxy lining. The epoxy lining shall be Protecto 401 Ceramic Epoxy as manufactured by the Protecto Division of Vulcan Painters, Inc, or equal. All pipe and fittings shall be lined with a minimum dry film thickness of 40 mils, except for the gasket groove and spigot end up to six inches back from the end of the spigot which shall be lined with ten mils of the material. All ductile iron pipe and fittings shall be checked for dry film thickness in accordance with the SSPC-PA2. Each pipe joint and fitting shall be marked with the date of application of the lining system and with its numerical sequence of application on that date. The pipe supplier shall furnish a certificate stating that lining applicator has complied with all specification requirements relative to the material, its application and inspection. Surface preparation, number of coats, application of the lining material and field touch-up shall be in strict accordance with the lining material manufacturer's recommendations. During the installation of the pipe, the lining material manufacturer shall provide the services of a field engineer to instruct and demonstrate to the Contractor's personnel, the procedure for the field touch-up of lining where field cuts and taps were required. Holiday inspection shall be conducted using test equipment described in American Water Works Association Standard,

AWWA C210, Section 5.3.3.1. In accordance with coating manufacturer's recommendation, holiday testing may be conducted any time after the coating has reached sufficient cure.

5. Polyethylene Encasement: All ductile iron pipe, fittings and valves installed underground shall be encased with polyethylene film in accordance with ANSI Standard A21.5, Method A or B at the Contractor's option. Encasement shall terminate 3-inches to 6-inches above ground where pipe is exposed.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. The Contractor shall perform all earthwork including excavation, backfill, bedding, compaction, sheeting, shoring and bracing, dewatering and grading in accordance with Division 2 Sitework.
- B. Unless otherwise directed, ductile iron pipe shall be laid with the bell ends facing upstream in the normal direction of flow and in the direction of laying.
- C. Thrust restrained and mechanical joints shall be made in accordance with the manufacturer's standards except as otherwise specified herein. Joints between mechanical joint pipe and/or fittings shall be made in accordance with AWWA C600, except that deflection at joints shall not exceed one-half of the manufacturer's recommended allowable deflection, or one-half of the allowable deflection specified in AWWA C600, whichever is the lesser amount.
- D. Before laying thrust restrained and mechanical joint pipe and fittings, all lumps, blisters and excess bituminous coating shall be removed from the bell and spigot ends. The outside of each spigot and the inside of each bell shall be wire brushed, and wiped clean and dry. The entire gasket groove area shall be free of bumps or any foreign matter which might displace the gasket. The cleaned spigot and gasket shall not be allowed to touch the trench walls or trench bottom at any time. Vegetable soap lubricant shall be applied in accordance with the pipe manufacturer's recommendations, to aid in making the joint. The Contractor shall exercise caution to prevent damage to the gasket or the adherence of grease or particles of sand or dirt. Deflections shall only be made after the joint has been assembled.
- E. Prior to making up flanged joints in ductile iron pipe and fittings, the back of each flange under the bolt heads and the face of each flange shall have all lumps, blisters and excess bituminous coating removed and shall be wire brushed and wiped clean and dry. Flange faces shall be kept clean and dry when making up the joint, and the Contractor shall exercise caution to prevent damage to the gasket or the adherence of grease or particles of sand or dirt. Bolts and nuts shall be tightened by opposites in order to keep flange faces square with each other, and to ensure that bolt stresses are evenly distributed.
- F. Bolts and nuts in thrust restrained, mechanical and flanged joints shall be tightened in accordance with the recommendations of the pipe manufacturer for a leak-free joint. The mechanics shall exercise caution to prevent overstress. Torque wrenches shall be used until, in the opinion of the Engineer, the mechanics have become accustomed to the proper amount of pressure to apply on standard wrenches.

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- G. Cutting of the ductile iron pipe for inserting valves, fittings, etc., shall be done by the Contractor in a neat and professional manner without damage to the pipe, the lining, or the coating. Pipe 16 inches and larger in diameter shall be cut with a mechanical pipe saw. After cutting the pipe, the plain end shall be beveled with a heavy file or grinder to remove all sharp edges.
- H. Areas of loose or damaged lining associated with field cutting shall be repaired or replaced as recommended by the pipe manufacturer and required by the Engineer. Repair methods shall be as recommended by the manufacturer and shall be submitted to the Engineer for review.
- I. Any work within the pipe shall be performed with care to prevent damage to the lining. No cable, lifting arms or other devices shall be inserted into the pipe. All lifting, pulling or pushing mechanisms shall be applied to the exterior of the pipe barrel.
- J. Homing the pipe shall be accomplished by the use of a hydraulic or mechanical pulling device, unless otherwise accepted by the Engineer. No pipe shall be driven or struck in order to seat it home.
- K. Cleaning: Cleaning methods shall be acceptable to the Engineer, and must be sufficient to remove silt, rocks, or other debris which may have entered the pipeline during its installation and shall also follow the requirements of the Section entitled "Pipeline Testing and Disinfection."

- END OF SECTION -

15006 5

DUCTILE IRON PIPE CAM #25-0925 Exhibit 1D Page 1184 of 2050

SECTION 15008 PVC NON-PRESSURE PIPE

PART 1 - GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish and install all 6- to 15-inch underground PVC non-pressure pipe where shown on the drawings, complete in place, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

All applicable sections of the Contract Documents

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. Commercial Standards:

ASTM D 1784	Specification	for	Rigid	Poly	(Viny	Chloride)	(PVC))

Compounds and Chlorinated Poly (Vinyl Chloride)

(CPVC) Compounds.

ASTM D 2241 Specification for Poly (Vinyl Chloride) (PVC)

Pressure-Rated Pipe (SDR-Series).

ASTM D 2321 Recommended Practice for Underground Installation of

Flexible Thermoplastic Sewer Pipe.

ASTM D 3034 Specification for Type PSM Poly (Vinyl Chloride) (PVC)

Sewer Pipe and Fittings.

1.04 SUBMITTALS

- A. <u>Samples</u>: The Contractor shall submit to the City for review, samples of all the materials proposed for use on the Work. The samples shall be clearly marked to show the manufacturer's name and product identification and shall be submitted along with the manufacturer's technical data and application instructions. All sample submittals shall conform to the requirements for "Samples" in Section 01300, "Submittals".
- B. <u>Shop Drawings</u>: The Contractor shall submit shop drawings and laying diagrams of all Pipe, joints, bends, special fittings, and piping appurtenances in accordance with Section 01300, "Submittals".
- C. <u>Certificates</u>: The Contractor shall provide manufacturer's certificates for all materials indicating conformance to the Contract Documents.

1.05 QUALITY ASSURANCE

A. Testing: All materials testing will be based upon applicable ASTM Test Methods and

15008 PVC NON-PRESSURE PIPE

AWWA Standards referenced herein for the materials specified.

- B. <u>Certificates</u>: Manufacturer's notarized certificates of compliance shall be furnished by the Contractor.
- C. The pipe shall be subjected to the specified hydrostatic strength tests, flexure tests, and crushing tests. The crushing tests shall be made on samples taken from the center of full-length sections of pipe.

1.06 CLEANUP

A. In addition to the requirements of Section 01700, "Project Closeout", the Contractor, upon completion of backfilling and grading over trenches shall remove all excess materials and equipment from the site.

PART 2 – PRODUCTS

2.01 GENERAL

- A. All PVC pipe shall be continuously and permanently marked with the manufacturer's name, pipe size, and pressure rating in psi.
- B. The Contractor shall also require the manufacturer to mark the date of extrusion on the pipe. This dating shall be done in conjunction with records to be held by the manufacturer for two years, covering quality control tests, raw material batch number, and other information deemed necessary by the manufacturer.

2.02 PIPE

- A. All PVC pipe shall be joined by compression joints unless otherwise shown or specified in the Piping Schedule, and shall conform to the following requirements:
 - 1. Polyvinylchloride pipe (PVC) shall conform to the requirements of ASTM D 3034, Class SDR 35. Material for PVC pipe shall conform to the requirements of ASTM D 1784 for Class 12454-B or 12454-C as defined therein.
 - 2. Flexible rubber rings for compression type joints for PVC pipe and fittings shall conform to the requirements of ASTM D 1869.

2.03 FITTINGS

- A. All fittings for PVC pipe shall conform to the requirements of ASTM D 2241. The ring groove and gasket ring shall be compatible with PVC pipe ends. The flanged fittings shall be compatible with cast-iron or ductile iron pipe fittings.
- B. The strength class of the fittings shall be not less than the strength class of any adjoining pipe.

PVC NON-PRESSURE PIPE

2.04 BEDDING MATERIAL

A. Unless otherwise specified or shown, all material used for pipe bedding shall conform to the requirements for "Embedment materials" as specified in ASTM D 2321.

PART 3 - EXECUTION

3.01 GENERAL

- A. All laying, jointing, testing for defects and for leakage shall be performed in the presence of the City, and shall be subject to his approval before acceptance. All material found during the progress to have defects will be rejected and the Contractor shall promptly remove such defective materials from the site of the Work.
- B. Installation shall conform to the requirements of ASTM D 2321 and to the supplementary requirements or modifications specified herein. Wherever the provisions of this Section and the requirements of ASTM D 2321 are in conflict, the more stringent provision shall apply.

3.02 TRENCHING AND BACKFILL

- A. Trench excavation and backfill shall conform to the requirements of the Section entitled "Excavation and Backfill for Utilities", and as specified herein.
- B. Unless otherwise specified or shown, the maximum width of trenches shall be as specified in said ASTM D 2321.

3.03 LAYING PIPE

- A. The pipe shall be installed in accordance with the requirements of ASTM D 2321 and as specified herein and shown and the sections shall be closely jointed to form a smooth flow line. Immediately before placing each section of pipe in final position for joining, the bedding for the pipe shall be checked for firmness and uniformity of surface.
- B. Proper implements, tools, and facilities as recommended by the pipe manufacturer's standard printed installation instructions shall be provided and used by the Contractor for safe and efficient execution of the Work. All pipe, fittings, valves, and accessories shall be carefully lowered into the trench by means of backhoe, ropes, or other suitable equipment in such a manner as to prevent damage to pipe and fittings. Under no circumstances shall pipe or accessories be dropped or dumped into the trench.
- C. Cutting and machining of the pipe shall be accomplished in accordance with the pipe manufacturer's standard procedures for this operation. Pipe shall not be cut with a cold chisel, standard iron pipe cutter, nor any other method that may fracture the pipe or will produce ragged, uneven edges.
- D. The pipe and accessories shall be inspected for defects prior to lowering into the trench. Any defective, damaged or unsound pipe shall be repaired or replaced. All foreign matter or dirt shall be removed from the interior of the pipe before lowering into position in the trench. Pipe shall be kept clean during and after laying. All openings in the pipeline shall

3

PVC NON-PRESSURE PIPE

be closed with water tight expandable type sewer plugs or PVC test plugs at the end of each day's operation or whenever the pipe openings are left unattended. The use of burlap, wood, or other similar temporary plugs will not be permitted.

- E. Adequate protection and maintenance of all underground and surface utility structures, drains, sewers, and other obstructions encountered in the progress of the Work shall be furnished by the Contractor.
- F. Where the grade or alignment of the pipe is obstructed by existing utility structures such as conduits, ducts, pipes, branch connections to main sewers, or main drains, the obstruction shall be permanently supported, relocated, removed, or reconstructed by the Contractor in cooperation with owners of such utility structures.

3.04 HANDLING

- A. Handling of the PVC pipe shall be done with care to ensure that the pipe is not damaged in any manner during storage, transit, loading, unloading, and installation.
- B. Pipe shall be inspected both prior to and after installation in the ditch and all defective lengths shall be rejected and immediately removed from the working area.

3.05 FIELD JOINTING

- A. Each pipe compression type joint shall be joined with a lock-in rubber ring and a ring groove that is designed to resist displacement during pipe insertion.
- B. The ring and the ring seat inside the bell shall be wiped clean before the gasket is inserted. At this time a thin film of lubricant shall be applied to the exposed surface of the ring and to the outside of the clean pipe end. Lubricant other than that furnished with the pipe shall not be used. The end of the pipe shall be then forced into the ring to complete the joint.
- C. The pipe shall not be deflected either vertically or horizontally in excess of the printed recommendations of the manufacturer of the coupling.
- D. When pipe laying is not in progress, the open ends of the pipe shall be closed to prevent trench water from entering pipe. Adequate backfill shall be deposited on pipe to prevent floating of pipe. Any pipe which has floated shall be removed from the trench, cleaned, and relaid in an acceptable manner. No pipe shall be laid when, in the opinion of the City, the trench conditions or weather are unsuitable for such Work.

3.06 INSTALLATION OF BENDS, TEES, AND REDUCERS

A. Cast-iron and PVC fittings shall be installed Utilizing standard installation procedures. Fittings shall be lowered into trench by means of rope, cable, chain, or other acceptable means without damage to the fittings. Cable, rope, or other devices used for lowering fitting into trench, shall be attached around exterior of fitting for handling. Under no circumstances shall the cable, rope or other device be attached through the fitting's interior

for handling. Fittings shall be carefully connected to pipe or other facility, and joint shall be checked to insure a sound and proper joint.

3.07 PIPE-TO-PIPE CONNECTIONS

A. Pipe-to-pipe connections shall be made by using flexible banded, sheer reinforced couplings or adapter couplings, each with compression joints, in compliance with ASTM C 425.

3.08 PIPE-TO-PIPE MANHOLE CONNECTIONS

A. When a sound pipe stub-out exists at a manhole to which connection is to be made, a pipe-to-pipe connection shall be made as described above. If a stub-out is not present or is faulty, an opening shall be cut in the manhole wall and the connection made. The connection shall consist of a pipe stub-out with elastomeric waterstop grouted into the opening with non-shrink grout. A flexible band coupling, as shown on the details for new manholes, shall join the pipe stub-out to the replacement pipe. The invert or floor inside the manhole shall be cut and reshaped as necessary.

3.09 GRAVITY SEWER SERVICE LATERALS

- A. Lateral sewers shall be installed in accordance with all the applicable requirement for pipe installation. Branch fittings shall be installed in the main line sewer as it is constructed, in the locations and configuration of the original laterals or as designated by the City.
- B. The existing laterals shall be hand excavated to a joint, saw cut, clean and square and the appropriate adapter installed to connect the replacement laterals. Care shall be taken to maintain the slopes of the existing laterals. The laterals shall be removed and replaced from the main line to a point along the existing lateral as determined by the City to be in acceptable condition.
- C. The Contractor shall not excavate trenches for laterals on both sides of the street at the same time unless written permission has been secured in advance to close the street.

3.10 TESTING

A. Field testing of gravity sewer pipe shall conform to the requirements of Section 15995, "Pipeline Testing and Disinfection".

- END OF SECTION -

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 15009 PVC PRESSURE PIPE

PART 1 - GENERAL

1.01 THE REQUIREMENT

A. This section includes materials, installation, and testing of polyvinyl chloride (PVC) pipe and fittings for use in process piping having a maximum operating pressure of 150 psi at a maximum operating temperature of 100 degrees F and a maximum operating pressure of 100 psi at a temperature of 120 degrees F.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 01300 Submittals
- B. Section 01600 Materials and Equipment
- C. Section 15000 Basic Mechanical Requirements

1.03 SUBMITTALS

- A. Submit shop drawings in accordance with the General Conditions.
- B. Submit materials list.
- C. Submit manufacturer's recommended method of installing buried pipe. Show alignments and offsets for "snaking" buried pipe.

PART 2 - MATERIALS

2.01 PIPE

A. Pipe shall be Schedule 80, Type 1, Grade 1 (Class 12454B), conforming to ASTM D 1784, except as noted below.

2.02 NIPPLES

A. Short nipples shall be the same as the PVC pipe.

2.03 FITTINGS

A. Fittings shall be Schedule 80 and shall conform to ASTM D 2464 for threaded fittings and ASTM D 2467 for socket-type fittings.

2.04 FLANGES

- A. PVC flanges shall be made of the same material as the pipe. Flanges shall match the dimensions of ANSI B16.5, Class 150, steel flanges. Flanges shall be flat face.
- B. Flanges shall be Van Stone style unless otherwise noted.

2.05 UNIONS

A. Union shall have socket-type ends, EPDM o-rings, and shall be Schedule 80. Material shall be Type 1, Grade 1 PVC, per ASTM D 1784, Class 12454B.

2.06 JOINTS

- A. Pipe and fittings joints shall be socket welded except where threaded and flanged joints are required to connect to unions, valves, and equipment.
- B. Solvent cement for socket joints shall comply with ASTM D 2564 and be NSF listed for potable water.
- C. Manufacturer shall provide written conformance of solvent cement with intended chemical application.

2.07 BOLTING AND NUTS FOR FLANGES

- A. Bolts and nuts for interior flanges shall be carbon steel conforming to ASTM A 307, Grade B
- B. Bolts and nuts for buried flanges and flanges located outdoors above ground or in vaults and structures shall be Type 316 stainless steel conforming to ASTM A 193, Grade B8M for bolts, and ASTM A 194, Grade 8M for nuts. Bolts and nuts larger than 1-1/8 inch shall be steel, ASTM A 307, Grade B, with cadmium plating, ASTM A 165, Type NS.
- C. Provide washers for each nut. Washers shall be of the same material as the nut.

PART 3 - EXECUTION

3.01 GENERAL

- A. Do not install PVC pipe when the temperature is below 40 degrees F or above 90 degrees F. Store loose pipes on racks with a minimum support spacing of 3 feet. Provide shade for pipe stored outdoors or installed outdoors until the pipe is filled with water.
- B. Store fittings indoors in their original cartons.
- C. Store solvent cement indoors or, if outdoors, shade from direct sunlight exposure. Do not use solvent cements which have exceeded the shelf life marked on the storage container.
- D. Before installation, check pipe and fittings for cuts, scratches, gouges, buckling, kinking, or splitting on pipe ends. Remove any pipe section containing defects by cutting out the damaged section as a complete cylinder.

3.02 INSTALLATION

A. Do not drag PVC pipe over the ground, drop it onto the ground, or drop objects on it. Cut pipe ends square and remove all burrs, chips, and fillings before joining pipe or fittings. Bevel solvent welded pipe ends as recommended by the pipe manufacturer.

3.03 SOLVENT WELDED JOINTS

- A. Prior to solvent welding, remove fittings and couplings from their cartons and expose them to the air for at least one hour to the same temperature conditions as the pipe.
- B. Wipe away loose dirt and moisture from the ID and OD of the pipe end and the ID of the fitting before applying solvent cement. Do not apply solvent cement to wet surfaces.
- C. Make up solvent welded joints per ASTM D 2855.
- D. Allow at least eight hours of drying time before moving solvent welded joints or subjecting the joints to any internal or external loads or pressures.

3.04 FLANGED JOINTS

- A. Lubricate bolt threads with MRO solution 1000 Food Grade Antiseize, or equal before installation.
- B. Tighten bolts on PVC flanges by tightening the nuts diametrically opposite each other using a torque wrench. Complete tightening shall be accomplished in stages and the final torque values shall be as shown in the following table:

Pipe Size (inches)	Final Torque (foot-pounds)
1/2 to 1-1/2	10 to 15
2 to 4	20 to 30
5 to 8	30 to 40
10	60 to 70

3.05 THREADED JOINTS

- A. Cut threaded ends on PVC to the dimensions of ANSI B2.1. Ends shall be square cut. Follow the pipe manufacturer's recommendations regarding pipe holddown methods, saw cutting blade size, and saw cutting speed.
- B. Pipe or tubing cutters shall be specifically designed for use on PVC pipe. Use cutters manufactured by Reed Manufacturing Company, Ridge Tool Company, or equal.
- C. If a holddown vise is used when the pipe is cut, insert a rubber sheet between the vise jaws and the pipe to protect from scratching the pipe.
- D. Thread cutting dies shall be clean and sharp and shall not be used to cut materials other than plastic.
- E. Apply Teflon thread compound or Teflon tape lubricant to threads before screwing on the fitting. Teflon tape shall be of type A-A-58092 or MIL-T-27730A manufactured by Threadmaster or equal. Use White tape for all chemical applications and Pink tape for all water applications.

3.06 INSTALLING UNIONS

- A. Provide unions on exposed piping 3 inches and smaller as follows:
 - 1. Provide a union at every change in direction (horizontal and vertical).
 - 2. Provide a union 6 to 12 inches downstream of valves.
 - 3. Provide a union every 40 feet in straight piping runs.
 - 4. Near threaded connections to mechanical or piping equipment.
 - 5. Where shown on the Drawings.

3.07 INSTALLING BURIED PIPE

- A. Trench bottom shall be continuous, smooth, and free of rocks. See the details on the Drawings for trench dimensions, pipe bedding, and backfill.
- B. After the pipe has been solvent welded and the joints have set, snake the pipe in the trench per the pipe manufacturer's recommendations in order to allow for thermal expansion and contraction of the pipe.
- C. Do not backfill the pipe trench until the solvent welded joints have set. Support the pipe uniformly and continuously over its entire length on firm, stable soil. Do not use blocking to change pipe grade or to support pipe in the trench.
- D. Install buried PVC pipe in accordance with ASTM D 2774 and the pipe manufacturer's recommendations. Backfill materials in the zone between the trench bottom and to a point 8 inches above the top of the pipe shall be imported fill per the Section entitled "Excavation and Backfill for Utilities." Compact by means of vibratory equipment or by flooding. Apply backfill in layers having a maximum thickness of 8 inches. If water flooding is used, do not add successive layers unless the previous layer is compacted to 90 percent relative compaction.

3.08 INSTALLING ABOVEGROUND PIPE

A. Install pipe on pipe hangers and supports as detailed on the Drawings and as specified in the Section entitled "Pipe Supports." Install pipe without springing, forcing, or stressing the pipe or the adjacent valves and equipment to which the pipe is connected.

3.09 PAINTING AND COATING

A. Coat piping in accordance with requirements of the Section entitled "Painting."

3.10 HYDROSTATIC TESTING

A. Perform hydrostatic testing for leakage in accordance with requirements set forth in the Section entitled "Pipeline Testing and Disinfection."

- END OF SECTION -

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

SECTION 15020 PIPE SUPPORTS

PART 1 - GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall provide all tools, supplies, materials, equipment, and all labor necessary for the furnishing, construction, and installation of all pipe supports, hangers, guides, and anchors shown, specified, or required for a complete and operable piping system, in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 11000 Equipment General Provisions
- B. Section 15000 Basic Mechanical Requirements
- C. Section 15095 Valves General

1.03 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. Commercial Standards

1. ASME B31.1 Power Pipi

2. ASTM A123 Standard Specifications for Zinc (Hot-Dip Galvanized)

Coatings on Iron and Steel Products

1.04 SUBMITTALS

A. Shop Drawings: The Contractor shall furnish complete shop drawings of all pipe supports, hangers, anchors, and guides, as well as calculations for special supports and anchors, in accordance with the Section entitled "Submittals."

PART 2 – PRODUCTS

2.01 GENERAL REQUIREMENTS

- A. As a minimum, supports shall be provided where identified on the Drawings. The Contractor shall note that all pipe support locations are not shown on the Drawings and shall follow the Specifications herein in locating supports. Where deviations and modifications are required, they shall be made subject to review by the Engineer. A detailed layout of pipe supports for each building shall be submitted to the Engineer for review.
- 3. All supports and parts required for the installation of the piping systems shall conform to requirements of the ASME B31.1 and MSS Standard practice SP-58 and SP-69, except as modified and supplemented by the requirements set forth herein. All piping shall be supported in such a manner to fulfill the intent of this Specification.

- C. Unless otherwise indicated on the Contract Drawings, all piping shall be rigidly supported from the building structure by approved hangers, inserts, or supports. No piping shall be supported from other piping or from metal stairs, ladders, and walkways unless specifically permitted by the Engineer.
- D. Unless otherwise indicated on the Contract Drawings, piping supports shall consist of concrete piers or fabricated steel supports as specified below. Materials and quality shall be in full compliance with Division 3, Concrete, and Division 5, Metals, of these Specifications.
- E. Supporting appurtenances shall be arranged to prevent undue stress on equipment to which piping is connected. Supporting appurtenances shall provide the desired pitch as specified or required for proper drainage of the piping. The pipe suspension shall prevent excessive stress, excessive variation in supporting force, and possible resonance with imposed vibration while the system is in operation. All valves and valve operators shall be rigidly supported independently of the piping. Vertical runs of pipe shall be supported independently of the connected horizontal runs. All vertical pipes shall be supported at each floor or at intervals of at least 10 feet by approved pipe collars, clamps, brackets or wall rests. Supporting appurtenances, when used with copper piping, shall be copper, bronze or bronze plated. All piping shall be supported independently of the equipment to which it is connected. All in line devices (flow meters, etc.) shall be removable without the need for temporary supports for adjacent and connecting piping.
- F. In general, the type of pipe supports to be used shall be as follows unless otherwise shown on the Drawings:

Centerline of Pipe above Floor	Type of Pipe	Type of Support
0 - 3 ft.	Metal	Concrete Pier
0 - 3 ft.	Plastic	Metal Framing System
3 - 6 ft.	All	Saddles or Brackets
>6 ft.	All	Hangers

- G. Wall bracket supports shall be used where shown for pipe to be installed adjacent to a wall. Where it is not feasible to install hanger supports, adjustable pipe saddle supports may be used upon review and acceptance by the Engineer.
- H. For all couplings, supports shall be placed on each side and as close to the coupling as possible. Supports shall be of the guide type which prevent axial movement resulting in pipe deflection or misalignment.
- I. Structural steel members can be used to support pipe.
- J. Stainless steel piping installed in tanks, channels or conduits shall be supported by hangers, hanger rods, hardware and inserts fabricated of Type 316 stainless steel.
- K. Where a specific pipe support is called for on the Drawings, this support shall be used as and where indicated for the specific application. In general, spacing of supports shall be as specified herein unless specifically modified by the Engineer.

- L. All support, saddles, bearing plates, and hangers, shall support by direct contact the pipe a minimum of 120 degrees around, except as specified herein.
- M. Where continuous concrete inserts are used, the maximum concentrated load on the end two (2) inches of inserts, with laying lengths of eight (8) inches or longer, shall not be more than 50 percent of the maximum recommended loading of the channel. All pipe supports shall be positioned such that they will not interfere with the use of hoisting equipment, where provided.
- N. Pipes subject to thermal expansion shall be installed perfectly aligned and concentrically guided. These piping (process air, hot water, etc.) support systems shall be roller supports as specified herein and shall be submitted to the Engineer for review. The submittal shall show location of anchors, concentric pipe guides and expansion joints (single or double).

2.02 PIPE ROLLER SUPPORTS

- A. The Contractor shall furnish and install self-lubricating roller supports as shown on the Contract Drawings and as specified herein. Roller supports shall be Grinnell Figure No. 271 or equal. Assemblies shall include all directly connected or welded anchorage hardware.
- B. Roller supports shall meet the loading requirements of the design and conforming to the details on the Drawings. The rollers shall have support section fabricated of the same material as is the pipe to be supported, a 300 series stainless steel slide plate, and a carbon steel base to which the Teflon is applied. The support plates at roller supports shall be stitch welded to stainless steel pipe at all roller support locations.
- C. The roller supports shall be installed in the exact locations shown or indicated on the Contract Drawings, at required elevations, true to orientation and level, assuring that the correct half of each roller is in its proper position. The Contractor shall store the rollers to protect them from mechanical damage prior to installation, and shall protect the same during and after installation from contamination and damage due to placing of concrete and other materials. The Contractor shall clean the operation surfaces of rollers thoroughly before final assembly.

2.03 PIPE SUPPORT SPACING

- A. The distance between supports for each size of pipe shall not exceed those listed in the attached schedule. However, if the pipe size to be supported is not listed in the schedule, the next smaller nominal pipe size spacing shall be used. In all cases, there shall be a minimum of one support per laying length of pipe on uninterrupted horizontal runs. This support shall be placed within one (1) foot of the joint. If the pipe manufacturer recommends a smaller spacing interval than specified herein, then the manufacturer's spacing shall be used.
- B. The distance between supports shall not exceed that listed in the following schedule unless otherwise noted:

3

Nominal Pipe Size (in.)	Metallic Piping (ft.)	Plastic and Copper Piping (ft.)
1/2	5	3
3/4 to 1-1/2	6	3
2 to 3	6	4
4	10	5
6 and larger	10	6

2.04 SADDLES

A. Pipe saddles shall be used to cradle horizontal piping when being supported from below except where expansion of pipe requires rollers. All saddles shall be capable of being adjusted after installation.

2.05 BASE ELBOWS, TEES AND CONCRETE PEDESTALS

A. Base elbows, tees and concrete pedestals shall be provided at the locations shown on the Drawings and as specified. All vertical runs of pipe shall be supported on a base elbow and/or concrete pedestal. After completion of curing of the concrete pedestal, the piping shall be adjusted to the proper grade.

2.06 PIPE HANGERS AND HANGER RODS

- A. Where pipe hangers are used, they shall be of the clevis or friction clamp type except where there is longitudinal movement due to temperature changes. Where longitudinal movement occurs, the adjustable yoke roller type hanger shall be used. See the hanger schedule below for location/type of hangers to be used. Pipe hangers shall be capable of supporting the pipe in all conditions of operation. They shall allow free expansion and contraction of the piping, and prevent excessive stress resulting from transferred weight being induced into the pipe or connected equipment.
- B. Hangers shall be designed so that they cannot become disengaged by movements of the supported pipe. Lock nuts shall be used on all hangers. All piping systems shall be supported by means of hangers having an individual means of vertical adjustment for leveling of lines after piping is in place.
- C. Spacing and arrangements shall conform to the requirements of Section 6, Chapter 1 of ASME B31.1. Spacing indicated shall be the maximum spacing.

PIPE HANGER SCHEDULE				
Piping System	Hanger Type	Grinnell or Equal	Materials of Construction	
All	Clevis Friction	Figure 260	Hot-Dip Galvanized	

DIDE LIAMOED COLLEDIN E

D. Hanger rods shall be subject to tensile loading only. At hanger locations where lateral or axial movement is anticipated, suitable linkage shall be provided to permit swing. Stainless steel hangers required in the pipe hanger schedule shall be supported by hanger

rods, hardware and inserts fabricated of Type 316 stainless steel. All other rods, hardware and inserts shall be fabricated of hot-dip galvanized steel.

- E. All concrete inserts and/or expansion bolts shall be capable of supporting the maximum working load of the rod, which is attached to it.
- F. Sheet metal insulation protector saddle shall be used for all hot water piping, refrigerant piping, etc. Saddle shall be Grinnell Figure 167, or equal.
- G. A neoprene isolation pad shall be provided between galvanized clevis and stainless steel piping.

2.07 HARNESSED PIPE SUPPORTS

- A. Pipe harness straps shall be provided on concrete pedestal supports where shown on the Drawings and required by these Specifications.
- B. Harness straps shall be 1/4-inch-thick, 316 stainless steel and attached to the concrete pedestal supports by stainless steel anchors.
- C. Strap width shall be in accordance with the Table below:

Pipe Diameter	Strap Width
4 inches and below	2 inches
6 inches and above	3 inches

2.08 METAL FRAMING SYSTEMS

- A. A metal framing system as manufactured by Unistrut, Globe-Strut or equal may be used for supporting the piping system. The metal framing system shall be designed and installed according to manufacturer's recommended procedure and shall be capable of supporting the piping system as specified herein.
- B. Channels, inserts and closure strips shall be cold formed mild steel conforming to ASTM A1011 unless otherwise noted on the Drawings.
- C. Fittings shall be Hot Rolled Steel conforming to ASTM A307 or ASTM A1011 and fasteners shall conform to ASTM A307 unless otherwise noted on the Drawings. All pieces shall be hot-dip galvanized after fabrication, unless otherwise noted on the Drawings.

2.09 PIPE SUPPORTS FOR PLASTIC PIPE

A. All pipe supports that will be used with plastic pipe shall be provided with a bearing plate where the width of hanger is less one-half (1/2) of the supported pipe's diameter. The bearing plate must provide bearing 180 degrees around and shall have a minimum laying length of 1/2 the pipe diameter or three (3) inches minimum. The bearing plates shall be rigid, corrosion resistant and not subject to long term plastic flow properties. To assure one hundred (100) percent bearing, the pipe shall be seated on a filler. This material shall be compatible for use with the pipe. Clamps to be used with plastic pipe shall be fitted snug and shall not exert clamp pressure on the pipe.

2.10 THRUST RESTRAINT

- A. Pipe anchors shall be spaced to divide pipe into sections. Anchors shall be located at valves, changes in direction of piping, and major branch connections. Anchors shall be of a type recommended by the pipe manufacturer and reviewed by the Engineer.
- B. On all piping, where sleeve type couplings and flanged adapters are located near fittings or valves, tie rods shall span across the coupling as specified herein to restrain movements of the pipe along its axial direction. Such restraints can be deleted if both ends of the pipe are anchored in a concrete structure with no fitting or valve occurring within the span length, in the suction piping to a pump where the coupling is between the pump and valve, or when the water pressure measured at the crown of the pipe is less than five (5) feet.
- C. All sleeve type couplings shall be harnessed except where noted. The harnessing shall be as shown on the drawings or as specified herein. Harnesses for steel pipe shall be in accordance with AWWA Manual M11 for the pipe size and pressure, working or test whichever is greater.
- D. Harnesses for ductile iron pipe shall be tie rods spanning between adjacent flanges. Friction clamps shall not be permitted. The size and number of tie rods shall be the same as for steel pipe for the same pressure and pipe size.
- E. Where the distance between adjacent flanges is in excess of ten (10) feet or where a harness cannot be used, the pipe supports adjacent to the coupling shall restrain the piping preventing any linear or angular movement resulting in the pipe separating from the coupling or misalignment in the joint.
- F. Where expansion joints are used, control units shall be provided. All tie rods and control units shall be installed in accordance with the manufacturer's recommended procedures.
- G. Tie rods and associated hardware shall be Type 316 stainless steel.
- H. In general, all valves and fittings shall be restrained in an approved manner such that the unbalanced force developed at them shall be supported independent of the piping system.

2.11 MANUFACTURED SUPPORTS

A. Where not specifically shown or detailed, designs, generally accepted as exemplifying good engineering practice, using stock or production parts, shall be utilized wherever possible. Such parts shall be locally available, new, of best commercial quality, designed and rated for the intended purpose.

- B. Support products shall be supplied by the following manufacturers:
 - 1. Basic Engineers, Pittsburgh, PA;
 - 2. Bergen-Paterson Corp., Boston, MA;
 - 3. Elcen Metal Products Company, Franklin Park, IL;

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- 4. ITT-Grinnell Corp., Warren, OH;
- 5. NPS Industries, Inc., Secaucus, NJ.
- 6. Or equal

2.12 COATING

- A. Unless otherwise shown or specified, all fabricated pipe supports, other than stainless steel or non-ferrous supports, shall be blast-cleaned after fabrication and hot-dip galvanized in accordance with ASTM A123.
- B. Other than the supports mentioned in Paragraph 2.12A, all supports shall receive protective coatings in accordance with the requirements of the Section entitled "Painting."

PART 3 -- EXECUTION

3.01 INSTALLATION

- A. All pipe supports, hangers, brackets, anchors, guides, and inserts shall be fabricated and installed in accordance with the manufacturer's printed instructions and ASME B31.1. All concrete inserts for pipe hangers and supports shall be coordinated with the formwork.
- B. Pipe supports and hangers shall be positioned in such a way as to produce an orderly, neat piping system. All hanger rods shall be vertical, without offsets. Hangers shall be adjusted to line up groups of pipes at the proper grade for drainage and venting, as close to ceilings or roofs as possible, without interference with other Work.
- C. The distance between supports for each size of pipe shall not exceed those listed in the attached schedule. However, if the pipe size to be supported is not listed in the schedule, the next smaller nominal pipe size spacing shall be used. In all cases, there shall be a minimum of one support per laying length of pipe on uninterrupted horizontal runs. This support shall be placed within one foot of the joint. If the pipe manufacturer recommends a smaller spacing interval than specified herein, then the manufacturer's spacing shall be used.
- D. Each section of the pipeline shall be laid out and all connections made while the pipe is held in temporary supports. After completion of connections, the pipe may be clamped in position. When piping is correctly installed, a clamp or pipe connection may be loose or removed without displacement of the pipeline.

3.02 FABRICATION

A. Pipe hangers and supports shall be fabricated and installed by experienced welders and fitters, using the best welding procedures available. Fabricated supports shall be neat in appearance without sharp corners, burrs, and edges.

- END OF SECTION -

SECTION 15030 PIPING AND EQUIPMENT IDENTIFICATION SYSTEMS

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install all components of the system for identification of piping and equipment as specified hereinafter. The system shall include the application of color coding to all new and altered plant piping. The Contractor shall paint the equipment and piping of all Contracts in the colors herein specified, and in accordance with the requirements of the Section entitled "Painting."
- B. In addition to the identification systems specified herein the Engineer may order the Contractor to furnish and install additional identification legends and arrows at no additional cost to the City. Such additional signs may be requested near completion of the work and shall be limited to no more than five (5) signs for each type specified herein. The lettering and color combinations for additional signs shall conform to the requirements specified herein.

1.02 SUBMITTALS

- A. The Contractor shall submit shop drawings and manufacturer's product literature in accordance with the Sections entitled "Submittals" and "Materials and Equipment." In addition, the Contractor shall submit with the shop drawings a schedule of the colors and designations proposed for each service.
- B. A minimum of four (4) color charts with cross-references to the colors and services listed herein shall be included with the Submittal. The City shall select the final color for each service during shop drawing review.

PART 2 - PRODUCTS

2.01 PIPING BANDS AND STRIPES

- A. All new and altered piping shall receive identification bands. Such bands shall be 6 inches wide, neatly made by masking, and spaced at intervals of 30 inches on centers regardless of the diameter of the pipe being painted.
- B. The Contractor may use approved precut and prefinished metal bands on piping, in lieu of the masked and painted bands, where approved by the Engineer. Banding colors shall be as indicated in Article 2.03 of this Section.
- C. Buried potable water piping shall be identified by continuous blue stripes in accordance with FDEP 62-555.

2.02 PIPING IDENTIFICATION LETTERING AND ARROWS

- A. The Contractor shall apply identification lettering in the form of plain upper-case block lettering giving the name of the pipe contents and arrows indicating the direction of flow of liquids to all types and sections of piping.
- B. All lettering and arrows shall be of the vinyl, self-adhesive tape type or the plastic snap-on/strap-on type with self-gripping fasteners. Pipe-marking devices (i.e., tape or snap-

Page 1201 of 2050

- on/strap-on type) shall be suitable for a 5 to 8-year outdoor life without discoloration. Pipe marking devices shall be as manufactured by Lab Safety Supply, or equal.
- C. Identification lettering and arrows shall be placed as directed by the Engineer but shall generally be located every ten feet and shall be properly inclined to the pipe axis to facilitate easy reading. Lettering shall also appear directly adjacent to each side of any wall or slab the pipeline passes through, with a minimum of two titles on each pipe in one structure. Identification lettering shall be located midway between color coding bands where possible.
- D. Lettering, background and arrow colors shall be the manufacturer's standard colors unless otherwise directed by the Engineer.
- E. All lettering and arrows shall have an overall height in inches in accordance with Table 15030-1.

Table 15030-1 Height of Pipe Lettering

Diameter of Pipe or Pipe Covering	Height of Lettering
3/4 to 1 1/4 inches	1/2 inch
1 1/2 to 2 inches	3/4 inches
2 1/2 to 6 inches	1 1/4 inches
8 to 10 inches	2 1/2 inches
Over 10 inches	3 1/2 inches

- F. The manufacturer's instructions shall be followed in respect to storage, surface preparation and application.
- G. For piping less than ¾ inch diameter, the Contractor shall furnish and attach corrosion resistant color tags with the required lettering.
- H. Pipe lettering for each service type shall be as indicated in Article 2.03 of this Section.

2.03 PIPING AND EQUIPMENT IDENTIFICATION SCHEDULE

A. Pipe lettering, pipe base color and band color shall match existing services. The Contractor shall provide the colors selected by the City from the painting manufacturer's color charts during shop drawing review.

PART 3 - EXECUTION

(NOT USED)

- END OF SECTION -

SECTION 15095 VALVES - GENERAL

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install, complete with all assemblies and accessories, all valves shown on the Drawings and specified herein including all fittings, appurtenances and transition pieces required for a complete and operable installation.
- B. All valves shall be constructed of first quality materials which have strength, wearing, and corrosion resistance characteristics entirely suitable for the types of service for which the individual valves are designated. Except where noted otherwise, valves designated for water service shall conform to pertinent sections of the latest revision of AWWA C500 Specifications. Cast iron valve bodies and parts shall meet the requirements of the latest revision of ASTM Designation A-126, "Standard Specifications for Gray Iron Castings for Valves, Flanges, and Pipe Fittings, Class B."
- C. All valve body castings shall be clean, sound, and without defects of any kind. No plugging, welding, or repairing of defects will be allowed.
- D. Valves shall have flanged ends for exposed service and mechanical joint ends for buried service, unless otherwise shown on the Drawings or specified herein. Flanged ends shall be flat-faced, 125 lb. American Standard unless otherwise shown or specified in accordance with ANSI B16.1. All bolt heads and nuts shall be hexagonal of American Standard size. The Contractor shall be responsible for coordinating connecting piping. Valves with screwed ends shall be made tight with Teflon tape. Unions are required at all screwed joint valves.
- E. Valve Labeling: A label shall be provided on all shut-off valves exclusive of hose bibbs. The label shall be of 1/16-inch plastic or stainless steel, minimum 2 inches by 4 inches in size, and shall be permanently attached to the valve or on the wall adjacent to the valve or as indicated by the Engineer.
- F. Provide required spare parts, special tools and one-year supply of lubricants for all valves.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 01300 Submittals
- B. Section 01600 Materials and Equipment
- C. Section 09900 Painting
- D. Section 15000 Basic Mechanical Requirements
- E. Section 15100 Valve Operators

1.03 SUBMITTALS

A. The Contractor shall furnish to the City, through the Engineer, a Performance Affidavit where required in individual valve specifications, utilizing the format specified in the

Section entitled "Equipment General Provisions." Performance tests shall be conducted in accordance with the latest revision of AWWA C500 and affidavits shall conform to the requirements of the Specifications

- B. Shop Drawings conforming to the requirements of the Section entitled "Submittals," are required for all valves, and accessories. Submittals shall include all layout dimensions, size and materials of construction for all components, information on support and anchoring where necessary, pneumatic and hydraulic characteristics and complete descriptive information to demonstrate full compliance with the Documents. Shop Drawings for electrically operated/controlled valves shall include all details, notes, and diagrams which clearly identify required coordination with the electrical power supply and remote status and alarm indicating devices. Electrical control schematic diagrams shall be submitted with the Shop Drawings for all electrical controls. Diagrams shall be drawn using a ladder-type format in accordance with JIC standards. Shop Drawings for pneumatically operated/controlled valves shall include all details, notes, and diagrams which clearly identify required coordination with the compressed air (service air) system and electrical controls.
- C. Operation and maintenance manuals and installation instructions shall be submitted for all valves and accessories in accordance with the Specifications. The manufacturer(s) shall delete all information which does not apply to the equipment being furnished.
- D. Spare parts list.
- E. Special tools list.

1.04 CONTRACTOR'S RESPONSIBILITIES

- A. The Contractor shall provide the services of a qualified representative of the manufacturer(s) of the equipment to check out and certify the installation(s), to supervise the initial operation, and to instruct the City's operating personnel in proper operation and maintenance procedures. Services of the qualified representative will require a minimum of two (2) site visits, one for installation and testing and one for startup and training, and will be for the minimum number of days recommended by the manufacturer and approved by the Engineer, but will not be less than the number of days specified in individual equipment sections.
- B. Any additional time required to achieve successful installation and operation shall be at the expense of the Contractor. The manufacturer's representative shall sign in and out at the office of the Engineer's Resident Project Representative on each day the manufacturer's representative is at the project.
- C. A written report covering the representative's findings and installation approval shall be mailed directly to the Engineer covering all inspection and outlining in detail any deficiencies notes.
- D. The times specified are exclusive of travel time to and from the facility and shall not be construed as to relieve the manufacturer of any additional visits to provide sufficient service to place the equipment in satisfactory operation.

PART 2 -- PRODUCTS

2.01 FLOW INDICATORS

A. Flow indicators shall be the Akron ball-type as manufactured by Brooks Instrument Co., Fischer and Porter, or equal, and shall have bronze bodies, glass dome, and plastic ball.

2.02 CORPORATION STOPS

A. Corporation stops shall be of bronze with tapered male iron pipe threads on inlets and outlets. Terminal outlets shall have screwed bronze hex head dust plugs or caps. Unions shall be used on all corporation stop outlets with connecting piping. Corporation stops shall have a minimum working pressure rating of 250 psi and shall be as manufactured by Mueller Co., Hays Mfg. Div. of Zurn Industries, or equal.

2.03 FLOOR BOXES

- A. Floor boxes shall be provided for all nut operated or floor accessed valves. Floor boxes shall be of the adjustable, sliding type, cast iron, suitable to withstand heavy traffic, as manufactured by James B. Clow & Sons, Kennedy Valve Mfg. Co., or equal. The covers shall be marked with appropriate designations of piping contents (i.e.: water, sewer) and bases shall be the round type. All nut operated valves in this Section shall be clearly identified by stainless steel or laminated plastic identification tags. The tags shall be permanently affixed to the inside of the floor boxes, under grating, etc. and shall bear the embossed letters which clearly identify each valve by its appropriate designation.
- B. Two (2) valve operating wrenches shall be supplied in 4 foot lengths with tee handles for each size nut supplied. Valve wrenches shall be Model No. F-2520 as manufactured by James B. Clow & Sons, Kennedy Valve Mfg. Co., Figure No. 122, or equal.

2.04 VALVE BOXES

- A. The Contractor shall furnish and install valve boxes as shown on the Drawings and specified herein.
- B. All valve boxes shall be placed so as not to transmit shock or stress to the valve and shall be centered and plumb over the operating nut of the valve. The ground in the trench upon which the valve boxes rest shall be thoroughly compacted to prevent settlement. The boxes shall be fitted together securely and set so that the cover is flush with the finished grade of the adjacent surface. A concrete pad as detailed on the Drawings shall be provided around the valve box, sloped outwards.
- C. All valve boxes shall be 2-piece cast iron, sliding type, 5-1/4-inch shaft, with heavy duty traffic weight collar and the lid marked with the appropriate carrier product (i.e.: WATER). Boxes shall be as manufactured by James B. Clow & Sons, Kennedy Valve Mfg. Co., Charlotte Pipe and Foundry Company, or equal.

PART 3 -- EXECUTION

3.01 INSTALLATION

- A. Except where noted otherwise herein, all valves shall be installing and tested in accordance with the latest revision of AWWA C500. Before installation, all valves shall be lubricated, manually opened and closed to check their operation and the interior of the valves shall be thoroughly cleaned. Valves shall be placed in the positions shown on the Drawings. Joints shall be made as directed under the Piping Specifications. The valves shall be so located that they are easily accessible for operating purposes and shall bear no stresses due to loads from the adjacent pipe. The Contractor shall be responsible for coordinating connecting piping.
- B. All valves shall be tested at the operating pressures at which the particular line will be used. Any leakage or "sweating" of joints shall be stopped, and all joints shall be tight. All motor operated and cylinder operated valves shall be tested for control operation as directed by the Engineer.
- C. Provide valves in quantity, size, and type with all required accessories as shown on the Drawings.
- D. Install all valves and appurtenances in accordance with manufacturer's instructions. Install suitable corporation stops at all points shown or required where air binding of pipe lines might occur. Install all valves so that operating handwheels or wrenches may be conveniently turned from operating floor but without interfering with access, and as approved by Engineer. Unless otherwise approved, install all valves plumb and level. Valves shall be installed free from distortion and strain caused by misaligned piping, equipment or other causes.
- E. Valve boxes shall be set plumb and centered with the bodies directly over the valves so that traffic loads are not transmitted to the valve. Earth fill shall be carefully tamped around each valve box to a distance of 4 feet on all sides of the box, or to the undisturbed trench face, if less than 4 feet.

3.02 SHOP AND FIELD TESTING

- A. Shop and field testing of valves shall be as follows:
 - Certified factory testing shall be provided for all components of the valve and operator system. Valves and operators shall be shop tested in accordance with the requirements in the latest revision of AWWA C500, including performance tests, leakage test, hydrostatic tests, and proof-of-design tests. The manufacturer through the Contractor shall submit certified copies of the reports covering the test for acceptance by the Engineer.
 - Shop testing shall be provided for the operators consisting of a complete functional check of each unit. Any deficiencies found in shop testing shall be corrected prior to shipment. The system supplier through the Contractor shall submit written certification that shop tests for the electrical/pneumatic system and all controls were successfully conducted and that these components provide the functions specified and required for proper operation of the valve operator system.

- 3. The Contractor shall conduct field tests to check and adjust system components, and to test and adjust operation of the overall system. Preliminary field tests shall be conducted prior to start-up with final field tests conducted during start-up. The factory service representative shall assist the Contractor during all field testing and prepare a written report describing test methods, and changes made during the testing, and summarizing test results. The service representative shall certify proper operation of the valve operator system upon successful completion of the final acceptance field testing.
- 4. Preliminary and final field tests shall be conducted at a time approved by the Engineer. The Engineer shall witness all field testing.
- 5. All costs in connection with field testing of equipment such as energy, light, lubricants, water, instruments, labor, equipment, temporary facilities for test purposes, etc. shall be borne by the Contractor. The Contractor shall be fully responsible for the proper operation of equipment during tests and instruction periods and shall neither have nor make any claim for damage which may occur to equipment prior to the time when the City formally takes over the operation thereof.
- 6. Preliminary field tests shall be conducted prior to start-up and shall include a functional check of the entire valve operator system and all system components. Preliminary field tests shall demonstrate that the valve operator system performs according to specifications and that all equipment, valves, controls, alarms, interlocks, etc., function properly. The preliminary field test report must be approved by the Engineer prior to conducting final field acceptance tests. Based on results of preliminary field tests, the Contractor shall make any adjustments required to settings, etc., to achieve the required valve closing time and operation specified or otherwise directed by the Engineer.
- 7. Final field acceptance tests shall be conducted simultaneously with the start-up and field testing of the pumps, air compressors, process air blowers, etc. Field tests shall be conducted for the full range of operating modes and conditions specified and as directed by the Engineer. Each of the valves shall be tested at minimum, maximum, and normal head/flow conditions, and under all specified conditions of opening and closing. Performance of pneumatic valves and compressed air system under normal operating conditions and during simulated power failures shall be checked.
- 8. Field testing shall include optimization of opening and closing times of the valves. The Contractor shall provide the means for accurate measurement of pipeline pressures as directed by the Engineer. Valve opening and closing times shall be adjusted based on process requirements to optimize operation of the valves. Final valve opening and closing times as determined by field tests shall be approved by the Engineer prior to final acceptance of the system.

- END OF SECTION -

SECTION 15100 VALVE OPERATORS

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. Equipment shall be provided in accordance with the requirements of the Section entitled "Basic Mechanical Requirements."
- B. Valve operators shall be designed to unseat, open or close, and seat the valve under the most adverse operating condition to which the valves will be subjected.
- C. Operator mounting arrangements shall be as indicated on the Drawings or as directed by the manufacturer and/or Engineer.
- D. The valve operators shall be the full and undivided responsibility of the valve manufacturer in order to ensure complete coordination of the components and to provide unit responsibility.

1.02 SUBMITTALS

- A. The following items shall be submitted with the Shop Drawings in accordance with, or in addition to the submittal requirements specified in the Section entitled "Submittals"
 - 1. Certification that the force required to operate all valves is as specified herein.

1.03 WARRANTY AND GUARANTEE

A. Warranty period shall be, as a minimum, for two (2) years from the date of shipment.

PART 2 - PRODUCTS

2.01 GENERAL

- A. Manual operator type shall be as specified herein and as shown on the Drawings.
- B. Quarter turn valves 6 inches and greater in size shall have geared operators. Gate valves 14 inches and greater in size shall have geared operators.
- C. Operators/actuators shall be furnished with conservatively sized extension bonnets, extension stems, or torque tubes, and all required appurtenances required for a complete installation. Operators furnished with extension bonnets shall include stainless steel extension stems, or stainless-steel torque tubes.

2.02 MANUAL OPERATORS

- A. Unless otherwise specified or shown on the Drawings, manual operator type shall be as follows:
 - 1. Buried valves shall be equipped with nut operators, extended stems, and valve boxes.

15100 VALVE OPERATORS

- 2. Exposed valves up to 4 inches shall be lever operated (except gate valves).
- 3. Exposed valves 6 inches and larger shall be handwheel operated.
- 4. Exposed gate valves shall be handwheel operated.
- 5. Valves with centerline of operator located more than 6-feet above the floor or platform from which it is to be operated shall have a chainwheel operator unless otherwise indicated on the Drawings.
- B. Manual operators shall be rigidly attached to the valve body unless otherwise specified or shown on the Drawings.
- C. All operators shall turn counter-clockwise to open and shall have the open direction clearly and permanently marked.
- D. Valve operators shall be designed so that the force required to operate the handwheel, lever, or chain (including breakaway torque requirements) does not exceed 80 pounds applied at the extremity of handwheel or chainwheel operator. Design pressures for sizing of valve operators shall be the piping test pressure for the piping in which the valve is to be installed.
- E. Handwheels for valves operators shall not be less than 12 inches in diameter. The maximum diameter of any handwheel shall not exceed 24 inches.
- F. Nut operators shall have standard 2-inch square AWWA operating nuts designed in accordance with AWWA C504-94.
- G. Geared manual operators shall be of the worm gear, traveling nut or scotch yolk type except manual operators for butterfly valves 18-inch in diameter or larger which shall be worm gear, unless otherwise indicated in the individual valve specification. Gear operators shall be of the worm gear or bevel gear type. Gear box designs incorporating end of travel stops in the housing shall be equipped with AWWA input stops. Each gearbox shall require a minimum of 10 turns for 90-degree rotation or full valve stem travel and shall be equipped with a mechanical valve position indicator.
- H. Manual operators on below grade (and vault installed) valves shall be permanently lubricated and watertight under an external water pressure of 10 psi.

15100 VALVE OPERATORS 2

PART 3 - EXECUTION

3.01 INSTALLATION

- A. All valve actuators shall be installed in accordance with the manufacturer's published recommendations and the applicable specification sections for valves, and motor controls.
- B. Valve actuators shall be factory coated in accordance with the manufacturer's standard paint system.

3.04 FIELD TESTS

- A. Field testing shall be in accordance with the following additional requirements:
 - 1. Valve actuators shall be field-tested together with the associated valves.
 - 2. Test all valves at the operating pressures at which the particular line will be used.

- END OF SECTION -

SECTION 15104 BALL VALVES

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish and install ball valves, complete and operable, as shown and specified herein, including epoxy coating, appurtenances, operators, and accessories, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 15095 – Valves – General

1.03 SUBMITTALS

- A. Shop Drawings: Submit shop drawings in accordance with the Section entitled "Submittals." The shop drawings shall include the following:
 - 1. Manufacturer's standard literature.
 - Dimension drawings for all valves to be supplied.
 - 3. Valve manufacture's recommended instructions for joining the valves and piping.
- B. Operation and Maintenance Manuals: Submit operation and maintenance manuals in accordance with the Section entitled "Submittals."

PART 2 – PRODUCTS

2.01 PLASTIC BALL VALVES

- A. Plastic ball valves shall be used at all PVC pipe installations where required and be made of polyvinyl chloride (PVC) or chlorinated polyvinyl chloride (CPVC) as recommended by the Supplier for any specific applications. PVC shall be Class 12454-B or better, conforming to resin specification ASTM D1784. CPVC shall be Class 23447-B or better, conforming to resin specification ASTM D1784. All valves shall have manual operators, unless otherwise specified or shown.
- B. All plastic ball valves shall have socket true union ends or flanged ends to ANSI B 16.5, class 150, for easy removal. The balls shall have full size ports and PTFE seats and shall be polished free of any imperfections. PTFE seats shall have elastomeric backing cushion of the same material as the valve seals. All body seals, union O-ring seals, and stem seals shall be Viton or equal. The valves shall be suitable for a maximum working non-shock pressure of 230 psi at 73 degrees F for sizes ½ inch through 2 inches and 150 psi at 73 degrees F for sizes 2½ inch through 6 inch. The handle shall incorporate a tool for adjustment of the seat carrier.
- C. Manufacturers: ASAHI-America, IPEX, Plast-o-Matic or equal.

2.02 STAINLESS STEEL BALL VALVES

- A. Ball valves for use with stainless steel piping systems, including instrument isolation, air lines, and moisture drains shall be end entry type with Type 316 stainless steel body and trim, Teflon seats and seals and flanged or threaded connections as indicated. Valve body shall be either two- or three-piece design, no internal ring for the ball shall be acceptable. Valves shall be Class 150.
- B. Valves shall be supplied with stainless steel manual lever or "T" handle. Valves used as moisture drain valves shall be installed at low points of the line and piped to drain.
- C. Manufacturers: Jamesbury Corporation, Jenkins Bros, Lunkenheimer Flow Control, Wm. Powell Company, Worcester Controls or equal.

PART 3 - EXECUTION

3.01 GENERAL

- A. All valves shall be installed in accordance with provisions of the Section entitled "Valves, General." Care shall be taken that all valves in plastic lines are well supported on each end of the valve.
- B. All valve exteriors shall be painted as specified in the Section entitled "Painting."

- END OF SECTION -

BALL VALVES CAM #25-0925 Exhibit 1D Page 1212 of 2050

SECTION 15108 GATE VALVES

PART 1 - GENERAL

1.01 THE REQUIREMENT

A. The CONTRACTOR shall furnish and install gate valves, complete and operable, as shown and specified herein, including operators, coating, control units, and appurtenant work, all in accordance with the requirements of the Contract Documents.

1.02 SUBMITTALS

A. Submit shop drawings and Operation and Maintenance Manual all in accordance with the Section entitled "Submittals".

1.03 REFERENCE STANDARDS

- A. AWWA C509 Resilient-Seated Gate Valves for Water-Supply Service
- B. ANSI/NSF 61 Drinking Water System Components Health Effects
- C. AWWA C550 Protective Epoxy Interior Coating for Valves and Hydrants

PART 2 - PRODUCTS

2.01 RESILIENT-SEATED GATE VALVES

- A. Resilient-seated gate valves shall conform to ANSI/AWWA C509 for valves up to 12 inches in diameter and shall conform to ANSI/AWWA C515 for valves 14 inches in diameter and larger.
- B. Resilient-seated gate valves shall have ductile iron bodies and bonnets.
- C. Stem o-rings shall be replaceable with the valve fully opened and subject to full line pressure.
- D. Valves 14 inches and larger installed in vertical pipes with their stems horizontal or in horizontal pipes with their stems horizontal shall be fitted with bronze slides, track rollers, scrapers and a standard by-pass valve to assist the travel of the gate assembly.
- E. Valves intended for above ground service shall have flanged end that comply with ANSI B16.1 125 pound.
- F. Gate valves intended for underground service shall have mechanical joint ends in accordance with ANSI A21.11 (AWWA C111).

- G. Valves 16 through 20 inches nominal size shall be fitted with a three inch by-pass valve. By-pass valves shall comply with AWWA specifications.
- H. Valves 24 and 30 inches nominal size shall be fitted with a four inch by-pass valve. By-pass valves shall comply with AWWA specifications.
- I. The valve shall turn counter clockwise to open.
- J. Underground service valves shall be equipped with a non-rising stem.
- K. Aboveground service valves shall be outside screw and yoke, unless shown otherwise on the Drawings.
- L. Valves intended for underground service shall be provided with a 2 inch operating nut, valve box and operating extension in accordance with the details shown on the Drawings. Provide necessary accessories for operating underground valve when the stem must be in a horizontal orientation when required by the depth of the proposed piping and valves.
- M. Valves intended for aboveground service shall be provided with a hand wheel. Above ground valves shall be rotated so that the operating stem is horizontal and the hand wheel is accessible to a person standing at ground surface.
- N. Markings: Markings shall be cast on the bonnet or body of each valve and shall show the manufacturer's name, year the valve casting was made, the size of the valve and the designated working water pressure. An arrow shall indicate the direction of turning to open.
- O. Manufacturers: American Flow Control, Clow/Kennedy, Mueller Company, or equal.

PART 3 - EXECUTION

3.01 GENERAL

- A. Coatings: Interior and exterior ferrous surfaces of valves that will be in contact with water shall receive a 10 mil dry film thickness thermosetting epoxy coating conforming to AWWA C550. Coating shall be suitable for contact with potable water and shall meet the requirements of ANSI/NSF Standard 61: Drinking Water System Components.
- B. All valves shall be installed in strict accordance with the Supplier's published recommendations.

- END OF SECTION -

SECTION 15114 MISCELLANEOUS VALVES AND APPURTENANCES

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish and install miscellaneous valves as shown and as specified herein, complete and operable including accessories and, where designated, operators, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 15095 – Valves – General

PART 2 - PRODUCTS

2.01 GATE VALVES (SMALLER THAN 3 INCHES)

A. Gate valves, smaller than 3 inches, for general purpose use shall be heavy duty type for industrial service, with screwed or soldered ends to suit piping. The bodies shall have screwed tops or union bonnets, of bronze to ASTM B 62, with bronze stems, solid wedges, metal handwheels, and Teflon-impregnated or other acceptable packing. Buried valves shall have non-rising stems. Exposed valves (above ground) shall have rising stems. All valves shall have a minimum pressure rating of 125 psi.

B. Manufacturers:

- 1. Crane Company
- 2. Milwaukee Valve Company
- 3. Wm. Powell Company
- 4. Or Equal.

2.02 SERVICE SADDLES

A. Service pipe saddle shall fit to the maximum O.D. of the saddle's range, and extend a minimum of 160 degrees around the pipe. When the saddle is used on pipe to the minimum pipe size of the range, the saddle shall extend 180 degrees around the pipe. Straps shall have ends chamfered and be provided with Class 2 fit, National Coarse Threads. Saddle casting shall be ductile iron, double strap and shall have asphaltic coating. Straps shall be stainless steel. Valve gaskets shall be self-sealing, neoprene.

2.03 SEWAGE AIR-VACUUM, AIR-RELEASE VALVES AND COMBINATION VALVES

Air-Vacuum Valves: Air and vacuum valves shall be capable of venting large quantities of air while pipelines are being filled and allowing air to re-enter while pipelines are being drained. They shall be of size indicated, with flanged or screwed ends to match piping. Bodies shall be of high-strength cast iron. The float, seat, and all moving parts shall be constructed of Type 316 stainless steel. Seat washers and gaskets shall be of a material insuring water tightness with a minimum of maintenance. Valves shall be designed for minimum 150-psi water-working pressure, unless otherwise indicated.

- B. Air-Release Valves: Air-release valves shall vent accumulating air while system is in service and under pressure and be of the size indicated and shall meet the same general requirements as indicated for air and vacuum valves except that the vacuum feature will not be required. Valves shall be designed for a minimum water-working pressure of 150 psi, unless otherwise indicated.
- Combination Vacuum Breaker-Air-Release Valves: Combination valves shall function by exhausting small pockets of air accumulated in systems under pressure and re-admitting large quantities of air to relieve a vacuum. Valves shall meet the same general construction requirements as indicated for air-vacuum valves. Valves shall be designed for a minimum working pressure of 150 psi, unless otherwise indicated.
- D. Plastic Air-Release Valves: Plastic air-release valves shall be constructed of PVC with EPDM seals and contain no metallic parts. Valves shall have a minimum water-working pressure of 150 psi (at 68°F).
- E. Valve ends shall be 125 lb. ANSI B16.1 flange or 125 lb. ANSI B2.1 threaded fittings depending on locations shown on the Drawings.

F. Manufacturers:

- 1. APCO (Valve and Primer Corporation), Series 440 SCAV and 400 SARV
- 2. Crispin (Multiplex Manufacturing Company)
- 3. Golden-Anderson
- IPEX (plastic valves only) 4.
- 5. Val-Matic (Valve and Manufacturing Corporation)
- 6. Or Equal.

TAPPING VALVE AND SLEEVE 2.04

- The tapping valves shall conform to the applicable requirements of ANSI/AWWA C500. Valves shall be installed as shown on the Drawings and shall be designed for 150 psi working pressure. Valve body shall be cast iron ASTM A126, Class B or ductile iron ASTM A395 or A536. Valves shall have a bronze trim, double disc, a non-rising stem and parallel or inclined seats. Stem seals shall be neoprene O-rings. The valve shall open counterclockwise and have enclosed bevel gears, track rollers and scrapers and a standard bypass valve. The inlet shall be ANSI sized to match the tapping sleeve. The outlet shall be a mechanical joint connection. The valves shall be as manufactured by Mueller, American, or equal.
- The Contractor shall verify the material and diameter of the existing lines to be tapped prior to ordering the sleeve. The tapping sleeves for prestressed concrete cylinder pipe shall be in accordance with AWWA M9. The sleeves shall have a separate gland which permits installation of the sleeve prior to cutting of the prestressed wires. The gland shall have an AWWA C213 fusion epoxy coated waterway, and a broad gasket set in a retaining groove of a pressure plate gusseted to eliminate flexing. The gland shall be equipped with load bearing setscrews to protect the cylinder. Grout under the saddle shall be required whether the saddle is epoxy coated or not. The grout shall provide uniform bearing transfer between the rough mortar coating and the saddle. Sleeves shall be furnished with grouting seals and grout horns to facilitate filling the space between the sleeve and

the pipe. Tapping sleeve straps, bolts and nuts shall be stainless steel or hot-dip galvanized after fabrication in accordance with ASTM A123 and ASTM A385. All internal threads shall be tapped or re-tapped after galvanizing. The tapping sleeve shall be a Price Brothers Company Tapping Sleeve for prestressed concrete cylinder pipe, or equal.

2.05 CORPORATION STOPS

A. Corporation stops shall be provided with all service saddle connections. Corporation stops shall be O-ring sealed, balance pressure, plug type valves having a full open unobstructed flow way. Corporation stops shall have threaded inlet and outlet connections unless otherwise indicated and shall be suitable for buried service where required. Corporation stops shall be manufactured of brass alloys containing less than 0.25 percent lead.

B. Manufacturers:

- 1. Ford Meter Box Company
- 2. James Jones Company
- 3. Mueller Company
- 4. Or Equal.

2.06 TAPPING SADDLES

- A. Tapping saddles shall fit to the maximum O.D. of the saddle's range, and extend a minimum of 160 degrees around the pipe. When the saddle is used on pipe to the minimum pipe size of the range, the saddle shall extend 180 degrees around the pipe. Straps shall have ends chamfered and be provided with Class 2 fit, National Coarse Threads. Saddle casting shall be ductile iron, double strap and shall have asphaltic coating. Straps shall be stainless steel. Valve gaskets shall be self-sealing, neoprene except for chlorine lines which shall be Viton.
- B. Tapping services and line stopping services shall be provided by the following service providers, or equal:
 - 1. Rangeline (http://www.rangeline.com)
 - 2. International Flow Technologies (http://www.hottap.com/index.html)
 - 3. T.D. Williamson, Inc. (http://www.tdwilliamson.com/)

2.07 SOLENOID VALVES

A. Solenoid valves shall be of the size, type, and class shown and shall be designed for not less than 150 psi water-working pressure. Valves for water, air, or gas service shall have forged brass body with female NPT threaded connections, suitable for installation in any position, stainless steel trim and spring, Teflon or other resilient seals with material best suited for the temperature and fluid handled. Solenoid valves in corrosive environment (subject to wastewater and/or chemical areas) shall have stainless steel bodies. For chemicals and all corrosive fluids, solenoid valves with Teflon bodies and springs or other suitable materials shall be used. General purpose enclosures for indoors shall be NEMA type 2. For explosion proof, corrosive, special purpose, or outdoor locations NEMA type 4X, 7, 8, 9, 9E, 9F, or 9G enclosures shall be used, as applicable. All coil ratings shall be for continuous duty. For electrical characteristics see the Electrical Drawings and Specifications.

B. Solenoid valve shall be Automatic Switch Co., Circle Seal Control Inc., Hex Valve, or Equal.

2.08 SMALL PRESSURE REDUCING VALVES (AIR AND WATER)

- A. Small air and water pressure reducing valves shall be of the spring-loaded diaphragm type with a minimum pressure rating of 250 psi, with bronze body, nickel alloy or stainless steel seat, and threaded ends. Each valve shall be furnished with built-in or separate strainer and union ends.
- B. The supplier shall be Mueller Company or equal.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. All valves shall be installed in accordance with the manufacturer's printed recommendations.
- B. All valves shall have piped outlets to the nearest acceptable drain, firmly supported, and installed in such a way as to avoid splashing and wetting of floors.

- END OF SECTION -

SECTION 15177 INLINE CHECK VALVES

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install inline check valves, complete and operable, as shown and specified herein, including appurtenances and accessories, all in accordance with the requirements of the Contract Documents.
- B. The requirements of the section entitled "Basic Mechanical Requirements" apply to the work of this section.

1.02 SUBMITTALS

- A. Shop Drawings: Submit shop drawings in accordance with the section entitled "Submittals". The shop drawings shall include but not limited to:
 - 1. Manufacturer's standard literature including head loss, flow data, pressure ratings, and vertical and horizontal opening pressures
 - 2. Dimension drawings for all valves to be supplied
 - 3. Valve manufacture's recommended installation instructions
- B. Operation and Maintenance Manuals: Submit operation and maintenance manuals in accordance with the section entitled "Submittals".
- C. Field Test Reports: Submit field test reports as required by this Section.

1.03 QUALITY ASSURANCE

A. Documented head loss tests are to be provided by the manufacturer. These are to be third party tests performed by a hydraulic testing institute and shall show head loss in open air and submerged conditions. Vertical opening pressure shall be tested and documented.

1.04 MANUFACTURER'S SERVICE REPRESENTATIVE

- A. The Contractor shall furnish the services of a qualified manufacturer's technical representative as described below. If multiple inline check valves are required for the Work, the times and trips apply to each size of inline check valve installed.
 - 1. At least one trip of one day to check and supervise the equipment installation
 - 2. At least one trip of one day to supervise testing and adjustments of the equipment

PART 2 - PRODUCTS

2.01 ACCEPTABLE MANUFACTURERS

A. Manufacturers: Inline check valves shall be WASTOP by WAPRO Inc., or approved equal.

2.02 INLINE CHECK VALVES

- A. Inline check valves shall be installed where shown in the Contract Documents. Inline check valves shall be designed to operate in installations using flanges, flat irons, slide muffs, joint couplings, or custom-made mounting tabs/brackets. If required, mounting tables shall be custom extended lengths as required to accommodate installation conditions. Inline check valves shall be designed to operate on an inlet, an outlet, vertically, horizontally, inside pipes, or between two pipes. The housing of the valve should be stainless steel.
- B. The membrane should be conical and should be attached to the housing along the top of the membrane, and the outlet side of the housing allowing maximum flow through the membrane. Unless noted otherwise, opening and closing pressures shall conform to the "Standard" valve configuration.
- C. Body lengths shall be standard or short body as required by the individual installation. Body length shall take into consideration operation and maintenance activities, including access for future replacement. Valves installed or accessed through manholes shall be short body length.
- D. Each inline check valve shall be labeled with flow direction and unique serial number.
- E. Materials of construction shall be as follows:

Housing / Tube	316 SS
Membrane	Polyurethane
Sealing/Gasket	EPDM
Collar Plate	316 SS
Whale Tail	Polyethylene
Bracket	316 SS
Nuts, Bolts, Washers	316 SS
Mounting Tabs	316 SS
Seal/Gasket	CR, EPDM
Flanges (when used)	316 SS

PART 3 - EXECUTION

3.01 GENERAL

A. All valves shall be installed in accordance with manufacturer recommendations and instructions.

3.02 TESTING

- A. After installation, the manufacturer shall field-test the valve in the presence of authorized representative of the City. All field tests including but not limited to those specified herein shall be made at the expense of the Contractor
 - 1. A 10-foot head of water shall be introduced on the discharge side of the valve, with leakage not to exceed that recommended by the manufacturer.
 - 2. A head of water shall be introduced on the inlet side of the valve, to verify opening pressures in the submerged and in the dry conditions.
 - 3. Make all necessary equipment adjustments and corrective work indicated by tests.

- END OF SECTION -

SECTION 15202 FLAP GATES

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish and install heavy duty flap gates, complete and operable, as shown and specified herein, including coating, appurtenances, and accessories, all in accordance with the requirements of the Contract Documents.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 15095 – Valves – General

1.03 SUBMITTALS

- A. Shop Drawings: Submit shop drawings in accordance with the Section 01300 Submittals. The shop drawings shall include the following:
 - 1. Manufacturer's standard literature
 - 2. Dimension drawings for all valves to be supplied
 - 3. Manufacturer's recommended instructions for joining the valves and piping
 - 4. Factory test report for hydrostatic testing
- B. Operation and Maintenance Manuals: Submit operation and maintenance manuals in accordance with the Section 01300 Submittals.

PART 2 - PRODUCTS

2.01 FLAP GATES

- A. Body shall be Grade 300 High Density Polyethylene. All non-HDPE parts shall be Type 316 stainless steel. All flap gates above 24 inches in diameter shall be reinforced. All valves shall be hydrostatically tested at the factory prior to shipment.
- B. Flap gates shall have flanged ends similar to Class 125 per ASME B16.1 for mounting at pipe ends. Angled extension tubes shall be provided where shown on the Drawings. All flap gates provided for pump discharges shall include an air bleed connection at the top of the gate.
- C. All mounting hardware required for flap gate installation shall be provided by the manufacturer.
- D. Manufacturers: Ross Valve Series 70HFV or equal.

PART 3 - EXECUTION

3.01 GENERAL

- A. All valves shall be installed in accordance with provisions of the Section 15095 Valves General. Care shall be taken that all valves in plastic lines are well supported on each end of the valve.
- B. All valve exteriors shall be painted as specified in the Section 09900 Painting.

- END OF SECTION -

SECTION 15995 PIPELINE TESTING AND DISINFECTION

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall perform flushing, disinfection and testing of all pipelines and appurtenant piping, complete, including conveyance of test water from City-designated source to point of use and all disposal thereof, all in accordance with the requirements of the Contract Documents

1.02 REFERENCE SPECIFICATIONS, CODES, AND STANDARDS

A. Commercial Standards

ANSI / AWWA B300 Hypochlorites
 ANSI / AWWA B301 Liquid Chlorine

3. ANSI / AWWA C651 Disinfecting Water Mains

1.03 SUBMITTALS

- A. A testing schedule, including proposed plans for water conveyance, control, and disposal shall be submitted in writing for approval a minimum of seven (7) days before testing is to start.
- B. The Contractor shall submit hydrostatic test reports in accordance with the Section 01300 Submittals and Section 01700 Project Closeout.

PART 2 – PRODUCTS

2.01 MATERIALS REQUIREMENTS

- A. All test equipment, temporary valves or bulkheads, temporary vents or drains, or other water control equipment and materials shall be determined and furnished by the Contractor subject to the City review.
- B. No materials shall be used which would be injurious to the construction or its future function.

PART 3 - EXECUTION

3.01 GENERAL

- A. Notify the Engineer and City 48 hours in advance to obtain City approval to commence testing and/or disinfection of any particular structure and/or pipeline.
- B. Unless otherwise provided herein, water for flushing and testing pipelines will be furnished by the City; however, the Contractor shall make all necessary provisions for conveying the water from the City-designated source to the points of use.
- C. All pressure and gravity pipelines shall be tested. All testing operations shall be performed in the presence of the City.

3.02 FLUSHING

- A. At the conclusion of the installation work, the Contractor shall thoroughly clean all new liquid conveying pipe by flushing with water or other means to remove all dirt, stones, pieces of wood, etc., which may have entered the pipe during the construction period.
- B. If after this cleaning any obstructions remain, they shall be corrected by the Contractor, at the Contractor's expense, to the satisfaction of the City. Liquid conveying pipelines shall be flushed at the rate of at least 2.5 feet per second for a duration suitable to the City or shall be flushed by other methods approved by the City.

3.03 HYDROSTATIC TESTING OF PIPING

- A. Following pipeline flushing, the Contractor shall hydrostatically test all pipelines either in sections or as a unit. No section of the pipeline shall be tested until all field-placed concrete or mortar have attained an age of 14 days. The test shall be made by closing valves when available, or by placing temporary bulkheads in the pipe and filling the line slowly with water. The Contractor shall be responsible for ascertaining that all test bulkheads are suitably restrained to resist the thrust of the test pressure without damage to, or movement of, the adjacent pipe. Care shall be taken to see that all air vents are open during filling.
- B. The pipeline shall be filled at a rate which will not cause any surges or exceed the rate at which the air can be released through the air valves at a reasonable velocity and all the air within the pipeline shall be properly purged. After the pipeline or section thereof has been filled, it shall be allowed to stand under a slight pressure for at least 24 hours to allow the concrete or mortar lining, as applicable, to absorb what water it will and to allow the escape of air from any air pockets. During this period, bulkheads, valves, and connections shall be examined for leaks. If leaks are found, corrective measures satisfactory to the City shall be taken.
- C. The hydrostatic test shall consist of holding the test pressure on the pipeline for a period of 4 hours. All visible leaks shall be repaired in a manner acceptable to the City.
- D. The maximum allowable leakage shall be determined by the following formula:

$$L = \frac{SD\sqrt{P}}{148,000}$$

Where: D = Pipe diameter in inches

S = Length of lines in linear feet

P = Average test pressure in psig

L = Allowable leakage for system in gallons per hour

E. In the case of pipelines that fail to pass the prescribed leakage test, the Contractor shall determine the cause of the leakage, shall take corrective measures necessary to repair the leaks, and shall again test the pipelines. The Contractor shall provide all reaction blocking and necessary plugs and caps required to test all piping installed as part of this Contract.

F. The Contractor shall submit to the City a detailed description of the testing procedures to be utilized.

3.04 FLUSHING

- A. All piping shall be flushed clean of all dirt and foreign material following completion of the hydrostatic and leakage test. Air and gas piping shall be purged with air or nitrogen gas as directed by the Engineer.
- B. Equipment and Supplies. The Contractor shall provide all equipment, and supplies for performing the work, and shall waste the water at locations or by procedures approved by the Engineer.

3.05 DISINFECTION

- A. Disinfection of potable water lines shall be performed in accordance with AWWA Standard C-651, State of Florida and local applicable regulations. The Contractor shall provide a Disinfection Plan to the Engineer for approval. The Contractor shall be responsible for furnishing fittings and all special pipe taps required by the pipe disinfection work.
- B. Provide list of equipment required and a disinfection plan to execute the Work of this Section.
- C. Inject the required amount of disinfectant to yield a minimum chlorine content of 50 ppm into piping system.
- D. Allow solution to remain in the pipes for twenty-four hours or longer, if required, to destroy all harmful bacteria.
- E. Operate all valves and other appurtenances during disinfection to assure the sterilizing mixture is dispersed into all parts of the system.
- F. After the solution has been retained for the required time, pipes shall be flushed and filled with municipal domestic water. Sterilizing water shall be disposed of in an approved manner. Sterilizing water shall not be allowed to flow into a waterway without reducing chlorine concentrations to a safe level. The Contractor shall be responsible for meeting all applicable requirements and acquiring all necessary permits for this work.
- G. Take one bacteriological sample and test from every segment of pipeline tested. Samples shall be taken and tested on each of two successive days. Contractor shall submit sample to a laboratory, approved by Engineer, for testing. The disinfection process shall be repeated if laboratory test results reflects presence of harmful bacteria in the water.

3.06 TESTS

- A. Provide analysis of treated water to meet standards and received acceptance from the Health Department.
- B. Test samples in accordance with AWWA C651.
- C. Quality Assurance: Testing Laboratory: Certified for examination of drinking water in compliance with applicable legislation of the State of Florida.

D. Regulatory Requirements: Conform to Chapter 62-555 of the Florida Administrative Code.

E. Submittals

- 1. Submit name of testing laboratory and evidence of qualification.
- 2. Submit three copies of reports.

F. Project Record Documents

- 1. Submit reports under provisions of the Sections entitled "Submittals" and "Project Closeout."
- 2. Bacteriological report; accurately record:
 - a. Date issued, project name, and testing laboratory name, address, and telephone number.
 - b. Time and date of water sample collection.
 - c. Name of person collection sample.
 - d. Test locations.
 - e. Initial and twenty-four- hour disinfectant residuals in ppm for each outlet tested.
 - f. Coliform bacteria test results for each outlet tested.
 - g. Certification that water conforms or fails to conform to bacterial standards of State of Florida.
 - h. Bacteriologist's signature.

3.07 CONNECTIONS TO EXISTING SYSTEM

- A. Where connections are to be made to an existing potable water system, the interior surfaces of all pipe and fittings used in making the connections shall be swabbed or sprayed with a one percent hypochlorite solution before they are installed. Thorough flushing shall be started as soon as the connection is completed and shall be continued until discolored water is eliminated.
- B. Prior to actual connections to the existing potable water system, record drawings, hydrostatic pressure test results, and bacterial test results shall be submitted to the Engineer. Upon approval from the Public Health Department, the connection can be constructed.

-END OF SECTION-

SECTION 16000 BASIC ELECTRICAL REQUIREMENTS

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish all labor, materials, tools, and equipment, and perform all work and services necessary for, or incidental to, the furnishing and installation of all electrical work as shown on the Drawings, and as specified in accordance with the provisions of the Contract Documents, and completely coordinate with the work of other trades involved in the general construction. Although such work is not specifically shown or specified, all supplementary or miscellaneous items, appurtenances, and devices incidental to or necessary for a sound, secure, and complete installation shall be furnished and installed as part of this work. The Contractor shall obtain approved Shop Drawings showing wiring diagrams, connection diagrams, roughing-in, and hook up details for all equipment and comply therewith. All electrical work shall be complete and left in operating condition in accordance with the intent of the Drawings and the Specifications for the electrical work.
- B. Reference Section 17000 Control and Information System Scope and General Requirements for scope of work details as they relate to the Division 17 Instrumentation and Control System Subcontractor.
- C. The electrical scope of work for this project primarily includes, but is not limited to, the following:
 - 1. Furnish and install low voltage electrical power distribution equipment.
 - 2. Furnish and install all aboveground raceway systems including conduit, fittings, boxes, supports, and other pertinent components.
 - 3. Furnish and install all underground raceway systems including conduit, fittings, and other pertinent components.
 - 4. Furnish and install all low voltage wire and cable resulting in a complete and operable electrical system.
 - 5. Furnish and install new lighting systems and wiring devices.
 - 6. Furnish and install grounding systems.
 - 7. Other electrical work as specified herein and indicated on the Drawings.
- D. All material and equipment shall be the product of an established, reputable, and approved manufacturer; shall be new and of first-class construction; shall be designed and guaranteed to perform the service required; and shall bear the Label of approval of the Underwriters Laboratories, Inc., where such approval is available for the product of the listed manufacturer as approved by the Engineer.

- E. When a specified or indicated item has been superseded or is no longer available, the manufacturer's latest equivalent type or model of material or equipment as approved by the Engineer shall be furnished and installed at no additional cost to the Owner.
- F. Where the Contractor's selection of equipment of specified manufacturers or additionally approved manufacturers requires changes or additions to the system design, the Contractor shall be responsible in all respects for the modifications to all system designs, subject to approval of the Engineer. The Contractor's bid shall include all costs for all work of the Contract for all trades made necessary by such changes, additions or modifications or resulting from any approved substitution.
- G. Furnish and install all stands, racks, brackets, supports, and similar equipment required to properly serve the equipment which is furnished under this Contract, or equipment otherwise specified or indicated on the Drawings. Equipment shall be furnished with the material of construction as indicated in Section 16190 Supporting Devices.
- H. All electrical components and systems (e.g., conduit and other raceways, freestanding equipment, etc.) and their anchorage, including electrical equipment foundations, shall be designed to resist the controlling load combination of gravity loads, operational forces, wind forces, seismic forces, thermal loads, and any other applicable forces required in accordance with the governing Building Code.

1.02 EQUIPMENT LOCATION

A. The Drawings show the general location of feeders, transformers, equipment, devices, conduits, and circuit arrangements. Because of the small scale of the Drawings, it is not possible to indicate all the details involved. The Contractor shall carefully investigate the structural and finish conditions affecting the work and shall arrange such work accordingly. Contractor shall furnish and install such fittings, junction boxes, and accessories as may be required to meet such conditions. The Contractor shall refer to the entire Drawing set to verify openings, special surfaces, and location of other equipment, or other special equipment prior to roughing-in for panels, switches, and other outlets. The Contractor shall verify all equipment dimensions to ensure that proposed equipment will fit properly in spaces indicated.

1.03 LOCAL CONDITIONS

- A. The Contractor shall examine the site and become familiar with conditions affecting the work. The Contractor shall investigate, determine, and verify locations of any overhead or buried utilities on or near the site, and shall determine such locations in conjunction with all public and/or private utility companies and with all authorities having jurisdiction (AHJs). All costs, both temporary and permanent to connect all utilities, shall be included in the Bid. The Contractor shall be responsible for scheduling and coordinating with the local utility for temporary and permanent services.
- B. The Contractor is responsible for coordinating all electric utility equipment installations with the serving electric utility. The Contractor shall furnish and install all electric utility

2

equipment required by the electric utility to be installed by the Contractor whether specifically shown on the Drawings or not.

- C. The Contractor shall furnish and install the following electric utility equipment as a minimum:
 - 1. Metering equipment
- D. The Contractor shall install the following electric utility furnished equipment as a minimum:
 - 1. Utility Handhole
- E. The electric utility will furnish and install the following equipment:
 - 1. New power pole
 - 2. Primary conductors and terminations
 - 3. Utility Transformer
 - 4. Secondary conductors from utility transformer to utility handhole
 - 5. Secondary cable terminations
- F. The Contractor is responsible for ensuring all electric utility equipment and construction installed by the Contractor is furnished and installed in accordance with the electric utility's design specifications and requirements. The Contractor is fully responsible for coordinating all required work with the electric utility. Any additional required electric utility construction or equipment not specified herein or shown on the Drawings shall be supplied by the Contractor at no additional cost to the Owner.
- G. The contact person at the serving electrical utility is:

Alonzo Russell, Distribution Engineer FPL 3020 NW 19th St., Fort Lauderdale, FL 33311 954-717-2096 Alonzo.Russell@fpl.com Utility tracking # - 13519358

1.04 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in Section 01300 Submittals and the requirements of the individual Specification Sections, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - 1. Shop Drawings
 - 2. Operation and Maintenance Manuals
 - 3. Spare Parts List

- 4. Proposed Testing Methods and Reports of Certified Shop Tests
- 5. Reports of Certified Field Tests
- 6. Manufacturer's Representative's Certification
- B. Submittals shall be sufficiently complete in detail to enable the Engineer to determine compliance with Contract requirements.
- C. Submittals will be approved only to the extent of the information shown. Approval of an item of equipment shall not be construed to mean approval for components of that item for which the Contractor has provided no information.
- D. Some individual electrical specification sections may require a Compliance, Deviations, and Exceptions (CD&E) letter to be submitted. If the CD&E letter is required and shop drawings are submitted without the letter, the submittal will be rejected. The letter shall include all comments, deviations, and exceptions taken to the Drawings and Specifications by the Contractor AND Equipment Manufacturer/Supplier. This letter shall include a copy of the applicable specification section(s). In the left margin beside each and every paragraph/item, a letter "C", "D", or "E" shall be typed or written in. The letter "C" shall be for full compliance with the requirement. The letter "D" shall be for a deviation from the requirement. The letter "E" shall be for taking exception to a requirement. Any requirements with the letter "D" or "E" beside them shall be provided with a full typewritten of the deviation/exception. Handwritten explanation explanation deviations/exceptions is not acceptable. The CD&E letter shall also address deviations and exceptions taken to each Drawing related to the applicable specification section(s).
- E. Submit design for all nonstructural electrical components and systems and their anchorage in accordance with the governing Building Code.

1.05 APPLICABLE CODES AND REQUIREMENTS

A. Conformance

- 1. Unless otherwise noted, all work, equipment, and materials furnished shall conform with the latest available version of the rules, requirements, and specifications of the following:
 - a. Insurance Rating Organization having jurisdiction.
 - b. The serving electric utility company.
 - c. The currently adopted edition of the National Electrical Code (NEC).
 - d. The National Electric Manufacturers Association (NEMA).
 - e. The Institute of Electrical and Electronic Engineers (IEEE).
 - f. The Insulated Cable Engineers Association (ICEA).
 - g. The American Society of Testing Materials (ASTM).
 - h. The American National Standards Institute (ANSI).

- i. The requirements of the Occupational Safety Hazards Act (OSHA).
- j. The National Electrical Contractors Association (NECA) Standard of Installation.
- k. National Fire Protection Association (NFPA).
- I. National Electrical Testing Association (NETA).
- m. All other applicable Federal, State/Commonwealth, and local laws and/or ordinances.
- 2. All equipment and materials shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL), if the material and equipment is of the type/class inspected by said laboratories.

B. Nonconformance

1. Any paragraph of requirements in these Specifications or Drawings deviating from the rules, requirements, and specifications of the above organizations shall be invalid and their (the above organizations) requirements shall hold precedent thereto. The Contractor shall be held responsible for adherence to all rules, requirements, and specifications as set forth above. Any additional work or material necessary for adherence will not be allowed as an extra, but shall be included in the Bid. Ignorance of any rule, requirement, or specification shall not be allowed as an excuse for nonconformity. Acceptance by the Engineer does not relieve the Contractor from the expense involved for the correction of any errors which may exist in the drawings submitted or in the satisfactory operation of any equipment.

C. Certification

1. Where applicable, upon completion of the work, the Contractor shall obtain certificate(s) of inspection and approval from the inspection organization having jurisdiction and shall deliver same to the Engineer and the Owner.

1.06 PERMITS AND INSPECTIONS

A. The Contractor shall reference the General Conditions and Section 01010 – Summary of Work.

1.07 TEMPORARY LIGHTING AND POWER

A. The Contractor shall reference the General Conditions and Section 01510 – Temporary Utilities.

1.08 TESTS

A. Upon completion of the installation, the Contractor shall perform tests for operation, load (Phase) balance, overloads, and short circuits. Tests shall be made with and to the satisfaction of the Owner and Engineer.

- B. The Contractor shall perform all field tests and shall provide all labor, equipment, and incidentals required for testing and shall pay for electric power required for the tests. All defective material and workmanship disclosed shall be corrected by the Contractor at no cost to the Owner. The Contractor shall show by demonstration in service that all circuits and devices are in good operating condition. Test shall be such that each item of control equipment will function not less than five (5) times.
- C. Refer to each individual specification section for detailed test requirements.
- D. The Contractor shall complete the installation and field testing of the electrical installation at least two (2) weeks prior to the startup and testing of any equipment served by that electrical equipment. During the period between the completion of electrical installation and the startup and testing of all other equipment, the Contractor shall make all components of the Work available as it is completed for their use in performing Preliminary and Final Field Tests.
- E. Before each test commences, the Contractor shall submit a detailed test procedure, and also provide test engineer resume, personnel, and scheduling information for the approval by the Engineer. In addition, the Contractor shall furnish detailed test procedures for any electrical equipment required as part of the field tests of other systems.

1.09 INFRARED INSPECTION

- A. Just prior to the final acceptance of a piece of equipment, the Contractor shall perform an infrared inspection to locate and correct all heating problems associated with electrical equipment terminations.
- B. Equipment located in hazardous areas shall be excluded from infrared testing requirements since the equipment in those areas is not intended to be operated while the enclosure is open. The infrared inspection shall apply to all new equipment in nonhazardous areas. All heating problems detected with new equipment furnished and installed under the Scope of this Contract shall be corrected by the Contractor at no additional cost to the Owner.
- C. The infrared inspection report shall include both digital photos and infrared (IR) photos positioned side by side. Both the digital and IR photos shall be clear and high quality. Fuzzy, grainy, or poorly illuminated photos are not acceptable. Each IR photo shall be provided with a temperature scale beside it, and an indication of the hot spot temperature in the photo. Reports shall be furnished in a 3-ring binder, with all pages printed in full color, with equipment assemblies separated by tabs.

1.10 PROTECTIVE DEVICE SETTING AND TESTING

A. The Contractor shall provide the services of a field services organization to adjust, set, calibrate and test all protective devices in the electrical system. The organization shall be a subsidiary of or have a franchise service agreement with the electrical equipment

6

manufacturer. The qualifications of the organization and resumes of the technicians as well as all data forms to be used for the field testing shall be submitted.

- B. All protective devices in the electrical equipment shall be set, adjusted, calibrated, and tested in accordance with the manufacturers' recommendations, the coordination study, and best industry practice.
- C. Proper operation of all equipment associated with the device under test and its compartment shall be verified, as well as complete resistance, continuity, and polarity tests of power, protective, and metering circuits. Any minor adjustments, repairs, and/or lubrication necessary to achieve proper operation shall be considered part of this Contract.
- D. All solid state trip devices shall be checked and tested for setting and operation using manufacturers' recommended test devices and procedures.
- E. Circuit breakers and/or contactors associated with the above devices shall be tested for trip and close functions with their protective device.
- F. When completed, the Contractor shall provide a comprehensive report for all equipment tested indicating condition, readings, faults, and/or deficiencies in same. Inoperative or defective equipment shall be brought immediately to the attention of the Engineer.
- G. Prior to placing any equipment in service, correct operation of all protective devices associated with this equipment shall be demonstrated by field testing under simulated load conditions.

1.11 POWER SYSTEM STUDIES

A. The Contractor shall provide power system studies performed by a licensed Professional Engineer (P.E.) in accordance with Section 16055 – Power System Studies.

1.12 SCHEDULES AND FACILITY OPERATIONS

- A. Since the equipment testing required herein shall require that certain pieces of equipment be taken out of service, all testing procedures and schedules shall be submitted to the Engineer for review and approval one (1) month prior to any work beginning. When testing has been scheduled, the Engineer shall be notified 48 hours prior to any work to allow time for load switching and/or alternation of equipment. In addition, all testing that requires temporary shutdown of facility equipment shall be coordinated with the Owner/Engineer so as not to affect proper facility operations.
- B. At the end of the workday, all equipment shall be back in place and ready for immediate use should a facility emergency arise. In addition, should an emergency condition occur during testing, at the request of the Owner, the equipment shall be placed back in service immediately and turned over to Owner personnel.

7

C. In the event of accidental shutdown of Owner equipment, the Contractor shall notify Owner personnel immediately to allow for an orderly restart of affected equipment.

1.13 EQUIPMENT, MATERIALS, AND SPARE PARTS HANDLING AND STORAGE

- A. Materials arriving on the job site shall be stored in such a manner as to keep material free of rust and dirt and to keep material properly aligned and true to shape. Rusty, dirty, or misaligned material will be rejected. Electrical conduit shall be stored to provide protection from the weather and accidental damage. Rigid non-metallic conduit shall be stored on even supports and in locations not subject to direct sun rays or excessive heat. Cables shall be sealed, stored, and handled carefully to avoid damage to the outer covering or insulation and damage from moisture and weather. Adequate protection shall be required at all times for electrical equipment and accessories until installed and accepted. Materials damaged during shipment, storage, installation, or testing shall be replaced or repaired in a manner meeting with the approval of the Engineer. If space heaters are provided in a piece of electrical equipment, they shall be temporarily connected to a power source during storage. The Contractor shall store equipment and materials in accordance with Section 01500 Construction Facilities and Temporary Controls.
- B. Spare parts lists, included with the shop drawing submittal for each Section, shall indicate specific sizes, quantities, and part numbers of the items to be furnished. Terms such as "1 lot of packing material" are not acceptable.
- C. Spare parts shall be completely identified with a numerical system to facilitate parts inventory control and stocking. Each part shall be properly identified by a separate number. Those parts which are identical for more than one size, shall have the same parts number.
- D. Spare parts shall be packed in containers suitable for long term storage, bearing labels clearly designating the contents and the pieces of equipment for which they are intended.
- E. Spare parts shall be delivered at the same time as the equipment to which they pertain. The Contractor shall properly store and safeguard such spare parts until completion of the work, at which time they shall be delivered to the Owner.

1.14 WARRANTIES

A. Unless otherwise specified in an individual specification section, all electrical equipment and electrical construction materials shall be provided with a warranty in accordance with the requirements of Section 11000 – Equipment General Provisions and the General Conditions.

1.15 TRAINING

A. Unless otherwise specified in an individual specification section, all training for electrical equipment shall be provided in accordance with the requirements of Section 11000 – Equipment General Provisions.

PART 2 - PRODUCTS

2.01 PRODUCT REQUIREMENTS

- A. Unless otherwise indicated, the materials to be provided under this Specification shall be the products of manufacturers regularly engaged in the production of all such items and shall be the manufacturer's latest design. The products shall conform to the applicable standards of UL and NEMA, unless specified otherwise. International Electrotechnical Commission (IEC) standards are not recognized. Equipment designed, manufactured, and labeled in compliance with IEC standards is not acceptable.
- B. All items of the same type or ratings shall be identical. This shall be further understood to include products with the accessories indicated.
- C. All equipment and materials shall be new, unless indicated or specified otherwise.
- D. The Contractor shall submit proof if requested by the Engineer that the materials, appliances, equipment, and/or devices that are provided under this Contract meet the requirements of Underwriters Laboratories, Inc. with regard to fire and casualty hazards. Documentation indicating Listing and Labeling by Underwriters Laboratories, Inc., will be accepted as meeting this requirement.
- E. Where the above items are Labeled by (bearing the certification mark of) an OSHA Nationally Recognized Testing Laboratory (NRTL) other than UL, and the NRTL is authorized by the Occupational Safety and Health Administration (OSHA) to test and certify those items to the same standard(s), then the certification mark of that NRTL shall be considered equivalent to the 'UL' certification mark.

2.02 SUBSTITUTIONS

A. Unless specifically noted otherwise, any reference in the Specifications or on the Drawings to any article, service, product, material, fixture, or item of equipment by name, make, or catalog number shall be interpreted as establishing the type, function, and standard of quality and shall not be construed as limiting competition. The Contractor, in such cases may use any article, device, product, material, fixture, or item of equipment which in the judgment of the Engineer, expressed in writing, is equal to that specified.

2.03 CONCRETE

- A. The Contractor shall furnish all concrete required for the installation of all electrical work. Concrete shall be Class A unless otherwise specified. Concrete and reinforcing steel shall meet the appropriate requirements of Division 3 of the Specifications.
- B. The Contractor shall provide concrete equipment pads for all free-standing electrical apparatus and equipment located on new slabs. The Contractor shall provide all necessary anchor bolts, channel iron sills, and other materials as required. The exact location and dimensions shall be coordinated for each piece of equipment well in advance

9

of the scheduled placing of these pads. Equipment pads shall be 4 inches high unless otherwise indicated on the Drawings and shall conform to the Standard Detail for equipment pads shown on the Drawings. Equipment pads shall not have more than 3 inches of excess concrete beyond the edges of the equipment.

PART 3 - EXECUTION

3.01 CUTTING AND PATCHING

A. Coordination

 The Work shall be coordinated between all trades to avoid delays and unnecessary cutting, channeling, and drilling. Sleeves shall be placed in concrete for passage of conduit wherever possible.

B. Damage

1. The Contractor shall perform all chasing, channeling, drilling, and patching necessary to the proper execution of this Contract. Any damage to the building, structure, or any equipment shall be repaired by qualified mechanics of the trades involved at the Contractor's expense. If, in the Engineer's judgment, the repair of damaged equipment would not be satisfactory, then the Contractor shall replace damaged equipment at the Contractor's expense.

C. Existing Equipment

Provide a suitable cover or plug for openings created in existing equipment as the
result of work under this Contract. For example, provide round plugs in equipment
enclosures where the removal of a conduit creates a hole and the enclosure. Covers
and plugs shall maintain the NEMA rating of the equipment enclosure. Covers and
plugs shall be watertight when installed in equipment located outdoors.

3.02 EXCAVATION AND BACKFILLING

A. The Contractor shall perform all excavation and backfill required for the installation of all electrical work. All excavation and backfilling shall be in complete accordance with the applicable requirements of Division 2.

3.03 CORROSION PROTECTION

A. Wherever dissimilar metals, except conduit and conduit fittings, come into contact, the Contractor shall isolate these metals as required with neoprene washers, nine (9) mil polyethylene tape, or gaskets.

- END OF SECTION -

10

SECTION 16055 POWER SYSTEM STUDIES

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall provide all power system studies for the project as specified herein. The following shall be performed:
 - 1. Short Circuit Studies
 - 2. Load Flow Analyses
 - 3. Protective Device Coordination Studies
 - 4. Arc Flash Risk Assessment
- B. The scope of the work for these studies shall include all new electrical equipment furnished under this Contract at the project site.
- C. The studies shall include all electric utility protective devices, transformers, generators, cables and control panels.
- D. Prior to receiving final approval of the distribution equipment shop drawings for the equipment proposed under this Contract and/or prior to release of that equipment for manufacture, the Preliminary Report, as specified herein, shall be submitted and approved. Contractor shall expedite the completion of the Preliminary Report so that final approval of proposed equipment is not delayed.
- E. The studies shall be performed with the aid of SKM Systems Analysis Power Tools for Windows (PTW) software, Version 11.0 or newer or ETAP software by Operation Technology Incorporated, Version 22.5 or newer. No other software analysis packages are acceptable.

1.02 CODES AND STANDARDS

A. All work shall be performed in accordance with the following Codes and Standards, as applicable (latest edition, unless otherwise specified):

1

- 1. Institute of Electrical and Electronic Engineers (IEEE):
 - a. Standard 141, Recommended Practice for Electric Power Distribution for Industrial Plants
 - b. Standard 241, Recommended Practice for Electric Power Systems in Commercial Buildings

- c. Standard 242, Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems
- d. Standard 3002.2, IEEE Recommended Practice for Conducting Load Flow Studies and Analysis of Industrial and Commercial Power Systems
- e. Standard 3002.3, IEEE Recommended Practice for Conducting Short-Circuit Studies and Analysis of Industrial and Commercial Power Systems
- f. Standard 1584-2018, IEEE Guide for Performing Arc-Flash Hazard Calculations
- 2. American National Standards Institute (ANSI):
 - a. Standard C37.90, IEEE Standard for Relays and Relay Systems Associated with Electric Power Apparatus
 - b. Standard C37.91, Guide for Protective Relay Applications to Power Transformers
 - c. Standard C37.95, Guide for Protective Relaying of Utility-Consumer Interconnections
 - d. Standard C37.96, Guide for AC Motor Protection
 - e. Standard C57.12.59, Guide Dry-Type Transformer Through-Fault Current Duration
 - f. Standard C.57.13, Standard Requirements for Instrumentation Transformers
 - g. Standard C57.109, Guide for Liquid-Immersed Transformer Through Fault-Current Duration
 - h. Standard Z535.4, Product Safety Signs and Labels
- 3. National Fire Protection Association (NFPA):
 - a. NFPA 70, National Electrical Code (NEC)
 - b. NFPA 70E, Standard for Electrical Safety in the Workplace (2024 Edition)

1.03 SUBMITTALS

- A. The Contractor shall submit the following reports for review and approval:
 - One (1) printed copy and one (1) electronic copy of the Preliminary Report.

2

2. One (1) printed copy and one (1) electronic copy of the Pre-final Report.

- 3. Four (4) printed copies and one (1) electronic copy of the Final Report.
- B. The Contractor shall submit one (1) complete electronic copy of the final power system model and all required database files generated by the software analysis package used. Files shall be placed on portable storage media (USB 3.0 flash storage device) or be uploaded to a cloud-based file sharing service and be submitted with the Final Report. Furnish any necessary documentation requiring the Owner's signature to allow model to be transferred to the Owner.

1.04 QUALIFICATIONS

- A. The studies shall be performed by a professional electrical engineer actively licensed in the state or commonwealth in which the project is located. The licensed professional electrical engineer shall have a minimum of five (5) years of experience in performing power system studies.
- B. The resume of the licensed professional electrical engineer shall be submitted for approval prior to the start of work. An experience table shall also be provided detailing the power system studies of similar scope to this Contract that have been performed by the proposed engineer over the last two (2) years. The table shall, at a minimum, list the facility owner's name, facility contact person with phone number and email address, and overall scope of work that was provided.

PART 2 - PRODUCTS (NOT USED)

PART 3 - EXECUTION

3.01 DATA COLLECTION

- A. The Contractor shall collect all required utility transformer and service information for use in these studies. The serving electric utility representative contact information can be found in Section 16000 - Basic Electrical Requirements.
- B. Approved equipment shop drawings and product information for all equipment furnished under this Contract shall be used for these studies. Including data for equipment that is not yet approved is not acceptable.

3.02 STUDY PARAMETERS

- A. The following parameters shall be used for all studies:
 - Transformers 75kVA (nominal) and larger shall be modeled with actual nameplate data including impedance data. Motors 30hp and larger shall be modeled with actual nameplate power factor and efficiency data.

- 2. Each set of pumps for a specific application has one redundant unit. For the purposes of these studies, that redundant unit shall be configured as out-of-service in the model.
- 3. The source that shall be used in these studies is the serving electric utility.
- B. Other parameters may apply for specific studies if noted in the respective study requirements herein.

3.03 SHORT CIRCUIT STUDIES

- A. The short circuit studies shall be performed in accordance with IEEE Standard 3002.3.
- B. The study input data shall include the short circuit contribution obtained from each source. Short circuit close and latch duty values and interrupting duty values shall be calculated on the basis of assumed three phase bolted short circuits at each bus. Single-line diagrams shall show the results of the analysis by using data blocks constructed as shown in Appendix A. Provide the results of this study in a tabular format as well, included as an appendix to the report.
- C. The short circuit study report shall include an analysis of whether the equipment's short circuit and withstand ratings shown in the Contract Documents are suitable.

3.04 PROTECTIVE DEVICE COORDINATION STUDIES

- A. A protective device coordination study shall be performed to provide the necessary calculations and logic decisions required to select or to check the selection of power fuse ratings, protective relay characteristics and settings, ratios and characteristics of associated current transformers, and low voltage circuit breaker trip characteristics and settings.
- B. The coordination study shall include all equipment from the serving electric utility company source protective devices down to and including all adjustable circuit protective devices. The phase and ground overcurrent protection shall be included as well as settings of all other adjustable protective devices.
- C. The time current characteristics of the proposed protective devices shall be printed on loglog scale coordination plots as specified below.
 - 1. Each plot shall be accompanied by a representative single-line diagram. The coordination plot and single-line diagram shall each occupy one-half of the same printed sheet for ease of cross reference. Each printed sheet shall have a distinct title that identifies the portion of the electrical system it represents.
 - 2. Each coordination plot shall include the following:
 - a. Sufficient number of separate curves shall be used to clearly indicate the coordination achieved

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- b. Identification of each curve with its respective component's name
- c. Complete operating bands for fuse and low voltage circuit breaker trip curves
- d. Transformer magnetizing inrush and ANSI transformer withstand parameters
- e. Cable thermal overcurrent withstand limits
- f. Significant symmetrical and asymmetrical fault currents for the portion of the electrical system represented by the plot
- 3. Each accompanying single-line shall include data blocks as described in Appendix A.
- 4. All restrictions of the National Electrical Code shall be adhered to, and proper coordination intervals and separation of characteristic curves shall be maintained.
- D. The selection and settings of all protective devices shall be provided separately in the report in a tabulated form listing circuit identification, IEEE device number, current transformer ratios and connections, manufacturer and type, range of adjustment and recommended settings.

3.05 LOAD FLOW ANALYSIS

- A. The load flow analysis shall be performed in accordance with IEEE Standard 3002.2.
- B. A load flow analysis shall be performed to determine the steady-state loading profile of the system(s) being studied. From the results of the load flow analysis, the report shall indicate areas of overloaded conductors, busses, or other equipment in the power distribution system. The load flow analysis results shall be presented in a tabular format as well as a single-line diagram format. Single-line diagrams shall show the results of the analysis by using datablocks constructed as shown in Appendix A. All assumptions associated with the analysis shall be documented in the report.

3.06 ARC FLASH RISK ASSESSMENT

- A. An arc flash risk assessment shall be performed in accordance with IEEE Std. 1584-2018, NFPA 70E, and OSHA 29-CFR, Part 1910 Subpart S. The assessment shall use the incident energy analysis method. The arc flash PPE category method shall not be used.
- B. The following parameters shall be used for the arc flash risk assessment:
 - 1. Working distance for <u>all</u> equipment: 18 inches
 - 2. Arcing duration limit: 2 seconds, or higher (based on engineering judgement) for equipment locations where additional time may be required to exit the arc flash boundary.

- 3. Equipment box dimensions and electrode configuration shall be entered for each piece of equipment (existing and/or new) to be assessed. Using software default dimensions and electrode configuration is not acceptable.
- 4. For equipment operating at 240VAC or below, report incident energy as "<1.2 cal/cm²" if the bolted fault current is calculated to be less than 2000A.
- 5. Any protective device settings changes that were recommended as part of these studies shall be included. For devices where settings changes are recommended, the "as-found" settings shall be documented separately in dedicated tables for record purposes.
- 6. The following operational scenario shall be used in the assessment:
 - a. Scenario 1: Main circuit breaker is closed, and the facility is served by the electric utility source.
- C. The arc flash risk assessment report shall include but not be limited to the following:
 - 1. A brief overview of what arc flash hazards are and how to avoid them.
 - 2. Definitions of key terms used in the report.
 - 3. Confirmation of all parameters and scenarios used in the report.
 - 4. Documentation of any assumptions made for the report.
 - 5. Serving electric utility information received. Copies of the information received shall be included in an appendix.
 - 6. Any recommendations to reduce the arc flash incident energies via protective device settings changes where incident energies are found to exceed 12 cal/cm². Protective device settings change recommendations shall not negatively impact selective coordination.
 - 7. A copy of the PPE information from Table 130.5 G in NFPA 70E.
 - 8. Arc flash labels as specified herein.
 - 9. An NFPA 70E energized electrical work permit for each location where an arc flash label is provided.
 - 10. An arc flash evaluation summary sheet, based on the worst-case scenario, that contains the following minimum information:

6

- a. Bus name
- b. Protective device name

- Bus line-to-line voltage
- d. Bus bolted fault
- e. Protective device bolted fault
- f. Protective device arcing fault
- g. Trip/delay time
- h. Breaker opening time
- i. Equipment type
- j. Gap
- k. Electrode configuration
- I. Box height, width, and depth
- m. Arc flash boundary
- n. Working distance
- o. Incident energy
- p. Notes

D. Arc Flash Labels

- 1. Arc flash labels shall be provided for each piece of equipment that is likely to require examination, adjustment, servicing, or maintenance while energized. When opening an enclosure exposes energized parts on both the line and load side of a device, provide a label with the worst case (line versus load) incident energy printed. The following equipment, at a minimum, shall be provided with labels in the quantities specified:
 - a. Enclosed circuit breakers quantity of 1
 - b. Pump Station Control Panel quantity of 1
- 2. Arc flash labels shall be thermal transfer type that is printed on adhesive backed polyester material. Labels shall be ANSI Z535.4 compliant, 4 inches tall by 6 inches wide, and provided with a 5-year warranty. For incident energy values of less than 40 cal/cm², the labels shall have an orange-colored header with the word "WARNING". For incident energy values equal to and above 40 cal/cm², the labels shall have a red-colored header with the word "DANGER". Each label shall include the following information:

- Equipment name
- b. Date of issue and name of firm performing assessment
- c. Incident energy
- d. Working distance
- e. Arc flash boundary
- f. Nominal system voltage
- 3. A generic arc flash label that has a red-colored header with the word "DANGER" and text in large letters that shows "ENERGIZED WORK NOT PERMITTED" shall be provided for the following equipment:
 - a. Any equipment that requires an arc flash label (as specified above) that is located within a hazardous area.
 - b. Any equipment found to be in poor working condition, where in the judgement of the engineer performing the study, energized work should not be performed at all, regardless of the outcome of the incident energy analysis at that equipment.

3.07 STUDY REPORTS

- A. The results of the studies shall be documented in a series of reports. A total of three (3) separate reports shall be provided as follows:
 - 1. Preliminary Report The Preliminary Report shall consist of all power systems studies as specified herein, with the following exceptions:
 - NFPA 70E energized electrical work permits shall not be included.
 - b. One (1) WARNING label and one (1) DANGER label shall be printed on plain paper for format review purposes only. Actual adhesive labels with calculated values shall not be included.
 - 2. Pre-final Report The Pre-final Report shall incorporate all comments received from the previous report review and shall include specific equipment data from the approved shop drawings of the proposed electrical equipment. The Pre-final Report shall consist of all power systems studies as specified herein, with the following exceptions:
 - a. NFPA 70E energized electrical work permits shall not be included.

- Sample arc flash hazard warning labels one (1) WARNING label and one (1)
 DANGER label) shall be printed on the proposed adhesive material for review purposes.
- 3. Final Report The Final Report shall consist of all power systems studies as specified herein, including final adhesive arc flash hazard warning labels. Final report shall incorporate all installed electrical equipment, including any field changes made during construction, and all comments received from the previous report review. All 'as-left' protective device settings shall be included in the report. The Final Report shall bear the signature and seal of the professional electrical engineer that performed the study.
- B. Hard copies of reports shall be furnished in the quantities specified herein, neatly organized into properly identified 3-ring binders. Tabs shall clearly separate each section of the report.
- C. Electronic copies of reports shall be provided in PDF file format. Electronic copies shall have searchable text and bookmarks for each section of the report.
- D. Each report shall begin with a table of contents followed by an executive summary. The executive summary shall detail the configuration of the electrical system and summarize any concerns or recommendations for the electrical distribution system that resulted from the studies specified herein.
- E. Reports shall include simplified single line diagrams with only the device name information displayed for all equipment, as well as single line diagrams with specific data displayed as specified herein for each study.
- F. All data used in the reports such as conductor sizes and lengths, motor sizes, utility contribution information, fault analysis input, fault contributions, and the like shall be included in the appendices of the report.
- G. All single line diagrams and time current curves shall be provided in the reports on 11x17 paper, properly folded to fit into the report binder. Use of standard 8.5x11 paper for these purposes is not permitted. Single line diagrams shall be appropriately split up between several sheets (if required) to allow the drawing scale to be adjusted as required to make text and symbols legible.

3.08 FIELD ADJUSTMENT

- A. The Contractor shall adjust all relay and other protective device settings according to the recommended settings table provided in the approved Pre-Final Report.
- B. The Contractor shall make minor modifications to equipment as required to accomplish conformance with short circuit and protective device coordination studies.

3.09 ARC FLASH LABEL PLACEMENT

A. The Contractor shall place approved adhesive arc flash labels on equipment after the Final Report is reviewed and approved.

3.10 TRAINING

A. The Contractor shall train the Owner's qualified electrical personnel of the potential arc flash hazards associated with working on energized equipment. The training shall be provided in two (2) separate sessions of no less than two (2) hours each. The training shall be certified for continuing education units (CEUs) by the International Association for Continuing Education Training (IACET), or equivalent. Training certificates shall be provided for all attendees.

- END OF SECTION -

APPENDIX A – SUPPLEMENTARY INFORMATION

REQUIRED DATABLOCK CONTENTS FOR POWER SYSTEM STUDIES

Component Type	Input Data	Load Flow	Short Circuit	TCC Plots*
Utility	Nominal Voltage	Nominal Voltage Current (A) Power Factor Power (kW) Power (kVA)	Fault Contribution (3P RMS) and X/R Ratio Fault Contribution (SLG RMS) and X/R Ratio	N/A
Generator	Nominal Voltage Rating (kW) Power Factor	Voltage Drop (%) Power Factor Power (kW) Power (kVA) Fault Contribution (3P RMS) Fault Contribution (SLG RMS)		FLA
Bus	Voltage	Voltage Drop (%) Study Voltage Current (A) Power Factor Power (kW) Power (kVA)	Fault Magnitude (3P RMS) Fault Magnitude (SLG RMS)	N/A
Cable	Size (AWG or kcmil) Parallel Sets Length Type (Cu/Al/Cu-Al)	Voltage Drop (%) Current (A) Power (kW) Power (kVA)	Upstream Contribution (3P RMS) Upstream Contribution (SLG RMS) Downstream Contribution (3P RMS) Downstream Contribution (SLG RMS)	N/A
Transformer	Rating (kVA) Impedance (%Z) X/R Ratio	Voltage Drop (%) Sec. Current (A) Power (kW) Power (kVA)	Upstream Contribution (3P RMS) Upstream Contribution (SLG RMS) Downstream Contribution (3P RMS) Downstream Contribution (SLG RMS)	N/A
Motor	Rating (hp) Rated Voltage FLA Power Factor	Voltage Drop (%) Study Voltage Power Factor Power (kW) Power (kVA)	Upstream Contribution (3P RMS) Upstream Contribution (SLG RMS)	FLA LRA/FLA ratio

Component Type	Input Data	Load Flow	Short Circuit	TCC Plots*
Non-Motor Load	Rating (A, kW, kVA) Rated Voltage Power Factor	Voltage Drop (%) Study Voltage Power Factor Power (kW) Power (kVA)	N/A	N/A
Fuse	Manufacturer Model Rating (A)	N/A	N/A	Same as Input Data
Relay**	Manufacturer Model CT Ratio Curve Elements & Settings	N/A	N/A	Same as Input Data
Circuit Breaker***	Manufacturer Model Frame/Sensor/Plug Ratings Settings*** LTPU [LTD Curve Shape] [LTD] [STPU] [STPU] [STD and I ² T On/Off] INST [GFPU] [GFD and I ² T On/Off] [AF Maint. Setting/Curve]	N/A	N/A	Same as Input Data
Motor Circuit Protector	Manufacturer Model Frame/Trip Ratings	N/A	N/A	Same as Input Data

Component Type	Input Data	Load Flow	Short Circuit	TCC Plots*
Motor Overload Relay	Manufacturer Model Frame/Trip Ratings Settings	N/A	N/A	Same as Input Data

^{*} TCC single line diagrams shall not display datablocks.

^{**} Complex and/or non-overcurrent settings for multifunction relays (e.g. bus/winding differential, motor thermal model parameters, under/overvoltage, RTD alarm and trip setpoints, etc.) are excluded from the model.

^{***} Hide setting elements where not applicable for a given circuit breaker. Recommended settings for non-overcurrent settings for electronic trip circuit breakers (e.g. under/overvoltage, zone-selective interlocking, alarm setpoints, etc.) are excluded from the model.

SECTION 16111 CONDUIT

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install conduits, conduit fittings, and appurtenances to complete the installation of all electrically operated equipment as specified herein, indicated on the Drawings, and as required.
- B. Reference Specification Section 16000 Basic Electrical Requirements.
- C. Requirements for conduit clamps, support systems, and anchoring are not included in this Section. Reference Specification Section 16190 Supporting Devices, for these requirements.

1.02 CODES AND STANDARDS

- A. All equipment and materials shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL).
- B. Conduits, conduit fittings, and appurtenances shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. American National Standards Institute (ANSI)
 - a. ANSI/ASME B1.20.1 Pipe Threads, General Purpose.
 - b. ANSI C80.1 Electrical Rigid Steel Conduit.
 - c. ANSI C80.5 Electrical Rigid Aluminum Conduit.
 - d. ANSI/NEMA FB 1 Fittings, Cast Metal Boxes, and Conduit Bodies for Conduit, Electrical Metallic Tubing, and Cable.
 - 2. National Electrical Contractors Association (NECA):
 - a. NECA 1 Standard for Good Workmanship in Electrical Construction.
 - 3. National Electrical Manufacturer's Association (NEMA):
 - a. NEMA FB 2.40 Installation Guidelines for Expansion and Expansion/Deflection Fittings.
 - b. NEMA RV-3 Application and Installation Guidelines for Flexible and Liquidtight Flexible Metal and Nonmetallic Conduits.
 - c. NEMA TC-2 Electrical PVC Conduit.

- d. NEMA TC-3 PVC Fittings for Use with Rigid PVC Conduit and Tubing.
- 4. National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).
- 5. Underwriters Laboratories (UL):
 - a. UL 6 Electrical Rigid Metal Conduit-Steel.
 - UL 6A Electrical Rigid Metal Conduit-Aluminum, Red Brass, and Stainless Steel.
 - c. UL 360 Standard for Liquid-tight Flexible Metal Conduit.
 - d. UL 467 Grounding and Bonding Equipment.
 - e. UL 514B Conduit, Tubing, and Cable Fittings.
 - f. UL 651 Standard for Schedule 40 and 80 Conduit and Fittings.
 - g. UL 1203 Standard for Explosion-proof and Dust-ignition-proof Electrical Equipment for use in Hazardous (Classified) Locations.
 - h. UL 1479 Standard for Fire Tests of Penetration Fire Stops.

6. Others:

- a. American Concrete Institute (ACI): ACI 318 Building Code Requirements for Structural Concrete.
- Aluminum Association Aluminum and It's Alloys.

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 Submittal, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - Shop Drawings
- B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - Conduit identification methods and materials.
 - 2. Product data sheets for conduits, fittings, and miscellaneous associated materials.
 - a. The product data sheets for conduits and fittings for up to three (3) manufacturers for each type of conduit specified herein will be reviewed if they are submitted at the same time under the same submittal cover for simultaneous review.

1.05 DEFINITIONS

- A. Conduits are categorized by the circuit type of the wiring to be installed inside. Conduits are defined as follows:
 - 1. Power Conduits Conduits that carry AC or DC power wiring from a source to a load. Conduits that carry lighting and receptacle wiring.
 - Control Conduits Conduits that carry AC or DC discrete control wiring between devices and/or equipment. Also, conduits that carry fiber optic cables between devices and/or equipment.
 - 3. Instrumentation Conduits Conduits that carry AC or DC analog signal wiring between devices and/or equipment. Conduits that carry Category 5e or Category 6 unshielded twisted-pair cables.

PART 2 – PRODUCTS

2.01 GENERAL

- A. Conduit and conduit fitting products are specified in the text that follows this article. Reference Part 3 herein for the application, uses, and installation requirements of these conduits and conduit fittings.
- B. All metallic conduit fittings shall be UL 514B and UL 467 Listed and constructed in accordance with ANSI FB 1. All metallic conduit fittings for use in Class I, Division 1 hazardous areas shall be UL 1203 Listed with a visible certification tag on the outside of the fitting. All non-metallic fittings shall be UL 651 Listed and constructed in accordance with NEMA TC-3.
- C. Flexible conduit couplings for use in Class I, Division 1 hazardous areas shall have threaded Type 316 stainless steel end fittings and a flexible braided core. Flexible braid shall be constructed of Type 316 stainless steel where available in the conduit trade size

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

required for the application. Where Type 316 stainless steel braid is not available, the braid shall be provided with a factory-applied PVC coating. No other braid types or materials are acceptable.

- D. Where threading is specified herein for conduit fitting connections, the fittings shall be manufactured to accept conduit that is threaded to ANSI B1.20.1 requirements.
- E. Conduit expansion fittings for all conduit materials of construction shall be capable of 4 inches of movement along the axis of the conduit for trade sizes 2 inches or less. Expansion fittings shall be capable of 8 inches of movement along the axis of the conduit for trade sizes greater than 2 inches.
- F. Conduit deflection fittings for all conduit materials of construction shall be provided with a flexible neoprene outer jacket that permits up to ¾ inch of expansion/contraction along the axis of the conduit as well as up to ¾ inch of parallel misalignment between the conduit axes. Outer jacket shall be secured to the conduit hubs by Type 304 stainless steel clamps.
- G. Conduit seals shall either be Listed and Labeled for 40% fill, or conduit reducing fittings and a trade size larger conduit seal shall be provided to achieve 25% or less fill within the seal. Percentage fill calculation shall be based on the conductors to be installed. Conduit seals shall be provided with breathers and/or drains where required by the NEC.
- H. Conduit insulating bushings shall be constructed of plastic and shall have internal threading.
- I. Additional conduit and conduit fitting requirements are specified in the articles that follow based on the specific conduit material of construction to be used.

2.02 RIGID GALVANIZED STEEL (RGS) CONDUIT AND ASSOCIATED FITTINGS

A. Conduit

- Conduit shall be hot dip galvanized on the inside and outside and made of heavy wall high strength ductile steel. Conduit shall be manufactured in accordance with ANSI C80.1 and shall be UL 6 Listed.
- 2. Conduit shall be provided with factory-cut 3/4 inch per foot tapered threads at each end in accordance with ANSI B1.20.1. Threads shall be cut prior to galvanizing to ensure corrosion protection adequately protects the threads. Conduit shall be provided with a matching coupling on one end and a color-coded thread protector on the other.
- B. Conduit Bodies for use with Rigid Galvanized Steel
 - Conduit bodies shall be constructed of an electro-galvanized malleable iron alloy which is coated with an acrylic paint finish. Conduit bodies shall have integral threaded conduit hubs.

CONDUIT CAM #25-0925 Exhibit 1D Page 1255 of 2050

- 2. Conduit bodies for Class I, Division 1 hazardous areas shall be provided with integrally threaded covers constructed of an electro-galvanized malleable iron alloy which is coated with an acrylic paint finish.
- 3. Conduit bodies for all other areas shall be provided with covers that are affixed in place by Type 304 stainless steel screws which thread directly into the conduit body. Covers that utilize wedge nuts or any other method of attachment to the conduit body are not acceptable. Covers shall be constructed of an electro-galvanized malleable iron alloy which is coated with an acrylic paint finish. Covers shall be provided with matching gasket.
- C. Conduit Couplings, Nipples, and Unions for use with Rigid Galvanized Steel
 - Couplings and nipples shall be threaded and shall be constructed of hot dipped galvanized steel. Split-type couplings that use compression to connect conduits are not acceptable.
 - 2. Unions shall be threaded, rain-tight, and constructed of an electro-galvanized malleable iron alloy which is coated with an acrylic paint finish.
- D. Conduit Expansion and Deflection Fittings for use with Rigid Galvanized Steel
 - Conduit expansion fittings and conduit deflection fittings shall be constructed of bronze or an electro-galvanized malleable iron alloy. Expansion and deflection fittings shall have threaded conduit connections.
 - 2. Expansion fittings shall have an integral bonding jumper and deflection fittings shall have an external bonding jumper.
- E. Conduit Seals for use with Rigid Galvanized Steel
 - 1. Conduit seals shall be constructed of an electro-galvanized malleable iron alloy which is coated with an acrylic paint finish. Conduit seals shall have threaded conduit connections.
- F. Conduit Termination Fittings for use with Rigid Galvanized Steel
 - Conduit hubs shall be constructed of Type 316 stainless steel and shall have threaded connections to the conduit and enclosure. Hubs shall have a plastic insulated throat and shall be watertight when assembled to an enclosure.
 - 2. Conduit locknuts shall be constructed of zinc plated steel. Locknuts shall have internal threading. Locknuts with integral gasket or seal are not acceptable. Locknuts shall have integral bonding screw where required for proper bonding.
 - 3. Conduit bonding bushings shall be constructed of zinc plated malleable iron. Bonding bushings shall have a threaded conduit connection. Bonding bushing shall

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

be provided with properly sized set screw for connecting bonding conductor and an integral plastic insulator rated for 150 degrees C located in the throat.

2.03 RIGID NONMETALLIC CONDUIT AND ASSOCIATED FITTINGS

A. Conduit

- 1. Conduit shall be Schedule 40 or 80 (dependent on application) polyvinyl chloride (PVC) construction, manufactured in accordance with NEMA TC-2, UL 651 Listed, and suitable for conductors with 90 degree C insulation.
- B. Conduit Bodies for use with Rigid Nonmetallic Conduit
 - 1. Conduit bodies shall be constructed of PVC. Conduit hubs shall be integral to the conduit body and shall be smooth inside to accept a glued conduit connection.
 - 2. Conduit body shall be provided with cover that is affixed in place by Type 304 stainless steel screws which thread directly into the conduit body. Covers that utilize wedge nuts or any other method of attachment to the conduit body are not acceptable. Covers shall be provided with matching gasket.
- C. Conduit Couplings and Unions for use with Rigid Nonmetallic Conduit
 - 1. Conduit couplings and unions shall be constructed of PVC and shall be smooth inside to accept a glued conduit connection.
- D. Conduit Expansion and Deflection Fittings for use with Rigid Nonmetallic Conduit
 - 1. Conduit expansion fittings and conduit deflection fittings shall be constructed of PVC and shall be smooth inside to accept a glued conduit connection.
- E. Conduit Termination Fittings for use with Rigid Nonmetallic Conduit
 - 1. Conduit hubs shall be constructed of PVC and shall be smooth inside to accept a glued conduit connection. Hubs shall have external threads and an accompanying PVC locknut and shall be watertight when assembled to an enclosure.
 - Conduit locknuts shall be constructed of zinc plated steel. Locknuts shall have internal threading. Locknuts constructed of PVC and locknuts with integral gasket or seal are not acceptable.
 - Conduit end bells shall be constructed of PVC and shall be smooth inside to accept a glued conduit connection. End bell shall have a smooth inner surface that curves outward towards the edge of the fitting.

2.04 RIGID ALUMINUM CONDUIT AND ASSOCIATED FITTINGS

A. Conduit

- 1. Conduit shall be made of heavy wall high strength 6063 alloy aluminum with temper designation T1 as defined by the Aluminum Association. Conduit shall be manufactured in accordance with ANSI C80.5 and shall be UL 6A Listed.
- Conduit shall be provided with factory-cut 3/4 inch per foot tapered threads at each end in accordance with ANSI B1.20.1. Threads shall be cut prior to galvanizing to ensure corrosion protection adequately protects the threads. Conduit shall be provided with a matching coupling on one end and a color-coded thread protector on the other.

B. Conduit Bodies for use with Rigid Aluminum Conduit

- 1. Conduit bodies shall be constructed of copper-free aluminum which is coated with an aluminum enamel finish. Conduit bodies shall have integral threaded conduit hubs.
- 2. Conduit bodies for Class I, Division 1 hazardous areas shall be provided with integrally threaded covers constructed of copper-free aluminum which is coated with an aluminum enamel finish.
- Conduit bodies for all other areas shall be provided with stamped copper-free aluminum covers that are affixed in place by Type 304 stainless steel screws which thread directly into the conduit body. Covers that utilize wedge nuts or any other method of attachment to the conduit body are not acceptable. Covers shall be provided with matching gasket.
- C. Conduit Couplings, Nipples, and Unions for use with Rigid Aluminum Conduit
 - 1. Couplings and nipples shall be threaded and shall be constructed of heavy wall high strength 6063 alloy aluminum with temper designation T1. Split-type couplings that use compression to connect conduits are not acceptable.
 - 2. Unions shall be threaded, rain-tight, and constructed of copper-free aluminum which is coated with an aluminum enamel finish.
- D. Conduit Expansion and Deflection Fittings for use with Rigid Aluminum Conduit
 - 1. Conduit expansion fittings and conduit deflection fittings shall be constructed of copper-free aluminum which is coated with an aluminum enamel finish. Expansion and deflection fittings shall have threaded conduit connections.
 - 2. Expansion fittings shall have an integral bonding jumper and deflection fittings shall have an external bonding jumper.
- E. Conduit Seals for use with Rigid Aluminum Conduit
 - 1. Conduit seals shall be constructed of copper-free aluminum which is coated with an aluminum enamel finish. Conduit seals shall have threaded conduit connections.

F. Conduit Termination Fittings for use with Rigid Aluminum Conduit

- Conduit hubs shall be constructed of copper-free aluminum and shall have threaded connections to the conduit and enclosure. Hubs shall have a plastic insulated throat and shall be watertight when assembled to an enclosure.
- Conduit locknuts shall be constructed of copper-free aluminum. Locknuts shall have internal threading. Locknuts with integral gasket or seal are not acceptable. Locknuts shall have integral bonding screw where required for proper bonding.
- 3. Conduit bonding bushings shall be constructed of copper-free aluminum. Bonding bushings shall have a threaded conduit connection. Bonding bushing shall be provided with properly sized set screw for connecting bonding conductor and an integral plastic insulator rated for 150 degrees C located in the throat.

2.05 LIQUID TIGHT FLEXIBLE METAL CONDUIT (LFMC) AND ASSOCIATED FITTINGS

A. Conduit

- 1. Conduit shall be manufactured using a single strip of hot dip galvanized high strength steel alloy, helically formed into a continuously interlocked flexible metal conduit. Trade size 1-1/4 inch and smaller conduits shall be provided with an integrally woven copper bonding strip.
- 2. Conduit shall be covered with an outside PVC jacket that is UV resistant, moistureproof, and oil-proof. Conduit shall be UL 360 Listed. Conduits shall be Listed for and marked with maximum temperature ratings as follows:
 - a. 105 degrees C dry, 60 degrees C wet for all conduit installed against or within
 2 inches of equipment capable of having a surface temperature of 80 degrees
 C or greater (e.g., blowers, incinerators, etc.)
 - b. 80 degrees C dry, 60 degrees C wet for all other locations

B. Conduit Termination Fittings for use with LFMC

- Conduit termination fittings shall be constructed of either Type 316 stainless steel
 or an electro-galvanized malleable iron alloy which is coated on the exterior with a
 40 mil (minimum) PVC jacket and coated on the interior with a 2 mil (minimum) layer
 of urethane. PVC coated fittings shall have a sealing sleeve constructed of PVC
 which covers the connection to conduit.
- 2. Termination fittings shall have a threaded end with matching locknut and sealing ring for termination to equipment and shall have an integral external bonding lug where required for proper bonding. Termination fittings shall have a plastic insulated throat and shall be watertight when assembled to the conduit and equipment.

CONDUIT CAM #25-0925 Exhibit 1D Page 1259 of 2050

2.06 CONDUIT BENDS

- A. Rigid conduit bends, both factory-fabricated and field-fabricated, shall meet the same requirements listed in the articles above for the respective conduit type and material of construction.
- B. Conduit bend radii for standard radius bends shall be no less than as follows:

Trade Size (inches)	3/4	1	1-1/4	1-1/2	2	2-1/2	3	3-1/2	4	5	6
Min. Radius (inches)	4-1/2	5-3/4	7-1/4	8-1/4	9-1/2	10-1/2	13	15	16	24	30

C. Conduit bend radii for long radius bends shall be no less than as follows:

Trade Size (inches)	3/4	1	1-1/4	1-1/2	2	2-1/2	3	3-1/2	4	5	6
Min. Radius (inches)	N/A	12	18	24	30	30	36	36	48	48	60

2.07 MISCELLANEOUS

A. Conduit Periphery Sealing

- 1. The sealing of the exterior surface of conduits to prevent water and/or air from passing around the conduit periphery from one space to another (where required) shall be through the use of one of the following:
 - a. A conduit sleeve and pressure bushing sealing system. Acceptable products are FSK by OZ-GEDNEY, Link-Seal by Crouse-Hinds, or Engineer approved equal.
 - b. A conduit sleeve that is two trade sizes larger than the conduit being sealed, with 2-hour fire rated UL 1479 Listed caulk filling the entire void between the conduit and sleeve. This method is only suitable for penetrations in non-fire rated walls and floors.
 - c. Conduit penetrations through fire-rated walls and floors shall be made with an approved UL 1479 Listed product specifically intended for the trade size of the conduit.
- 2. See Part 3 herein for the specific application of the conduit periphery sealing requirements above that are to be used based on what the conduit will be penetrating.

B. Primer and Cement

1. Nonmetallic conduit shall be cleaned with primer and connected to fittings with the manufacturer's recommended cement that is labeled Low VOC.

C. Galvanizing Compounds

1. Galvanizing compounds for field application shall be the cold-applied type, containing no less than 93% pure zinc.

D. Conduit Interior Sealing

- 1. For all conduits that have cables inside, the sealing of the inside of the conduits against water ingress shall be achieved through the use of one of the following:
 - a. Two-part expanding polyurethane foam sealing compound, dispensed from a single tube which mixes the two parts as it is injected into the conduit. Expanding foam shall be compatible with the conduit material of construction as well as the outer jacket of the cables in the conduit. Acceptable products are Q-Pak 2000 by Chemque, FST by American Polywater Corporation, or Hydra-seal S-60 by Duraline.
 - b. Inflatable bag that provides seal around cables and around inside diameter of conduit. Provide appropriate quantity of additional fittings for applications with three or more cables in the conduit to be sealed. Acceptable products are Rayflate by Raychem, or Engineer approved equal. This sealing method is only applicable to conduits trade size 2 inch and larger.
 - c. Neoprene sealing ring provided with the required quantity and diameter of holes to accommodate the cables in each conduit. Sealing ring shall be compressed by two Type 304 stainless steel pressure plates. Acceptable products are type CSB by OZ-GEDNEY, or Engineer approved equal. This sealing method is only applicable to metallic conduits containing 4 or less cables.
- 2. The use of aerosol-based expanding foam sealants or any other method of sealing against water ingress not listed above is not acceptable.
- 3. For conduits identified as spares, the sealing of the inside of the conduit against water ingress shall be achieved by using appropriately sized rubber expanding-style conduit plugs.

E. Pull Rope

- 1. Pull ropes for empty and/or spare conduits shall be woven polyester, ½-inch wide, with a minimum tensile strength of 1250 lbs. In addition, pull ropes for conduits that are installed concealed shall also have a 22-AWG (minimum) tin-plated copper conductor woven in to make the rope detectable.
- 2. Pull ropes for the Contractors use in installing conductors shall be the size and strength required for the pull and shall be made of a non-metallic material.

CONDUIT CAM #25-0925 Exhibit 1D Page 1261 of 2050

PART 3 - EXECUTION

3.01 GENERAL

- A. All conduit and associated fittings and appurtenances shall be installed in accordance with NECA 1.
- B. Minimum trade size for all rigid conduits shall be 1 inch if any portion of the conduit is installed in a ductbank and 3/4 inch for all other applications. Conduits installed within ductbanks shall be allowed to be increased in size to trade size 2 inch, at the Contractor's option, to accommodate the saddle size of the ductbank spacers. However, no combining of circuits shall be allowed in the larger conduits.
- C. Minimum trade size for flexible conduits (where specifically allowed herein) shall be 1/2 inch in all applications.
- D. Conduit routing and/or homeruns within structures is not shown on the Drawings. Conduits shall be installed concealed wherever practical and within the limitations specified herein. All other conduits not capable of being installed concealed shall be installed exposed.
- E. Empty and/or spare conduits shall be provided with pull ropes which have no less than 12 inches of slack at each end.
- F. Nonmetallic conduits for installations requiring less than a factory length of conduit shall be field cut to the required length. The cut shall be made square, cleaned of debris, and primer shall be applied to ready each joint for fusing. Conduits shall then be fused together with the conduit manufacturer's approved cement compound.
- G. Metallic conduits for installations requiring less than a factory length of conduit shall be field cut to the required length. The cut shall be made square, be cleaned of all debris and be de-burred, then threaded. Conduit threading performed in the field shall be ³/₄ inch per foot tapered threads in accordance with ANSI B1.20.1.
- H. Conduits shall be protected from moisture, corrosion, and physical damage during construction. Install dust-tight and water-tight conduit fittings on the ends of all conduits immediately after installation and do not remove until conductors are installed.
- I. Conduits shall be installed to provide no less than 12 inches clearance from pipes that have the potential to impart heat upon the conduit. Such pipes include, but are not limited to, hot water pipes, steam pipes, exhaust pipes, and blower air pipes. Clearance shall be maintained whether conduit is installed in parallel or in crossing of pipes.
- J. Where non-metallic instrumentation conduits are installed exposed, the following clearances to other conduit types shall be maintained:

Installation Scenario	Clearance
Parallel to conduits with conductors energized at 480V or above	18 inches

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

Parallel to conduits with conductors energized at 240V and below	12 inches
At right angles to conductors energized at 480V and below	6 inches
At right angles to conductors energized at voltages above 480V	12 inches

- K. Where conduit fittings do not include an integral insulated bushing, an insulated bushing shall be installed at all conduit termination points.
- L. Conduits which serve multi-section equipment shall be terminated in the section where wiring terminations will be made.
- M. In no case shall conduit be supported or fastened to another pipe or be installed in a manner that would prevent the removal of other pipes for repairs.
- N. All field fabricated threads for rigid galvanized steel conduit shall be thoroughly coated with two coats of galvanizing compound, allowing at least two minutes to elapse between coats for proper drying.
- O. Conduits which emerge from within or below concrete encasement shall be rigid galvanized steel in accordance with Standard Detail 1611102 where the conduit is not protected by an equipment enclosure that surrounds the conduit on all sides at the point where it emerges from the encasement.
- P. Aluminum conduits shall not be installed in direct contact with concrete surfaces. Where aluminum conduits are routed along concrete surfaces, they shall be installed with one-hole electro-galvanized malleable iron alloy straps with matching clamp-backs to space the conduit ¼ inch away from concrete surface. Where aluminum conduit passes through concrete, CMU or brick walls, the penetration shall be made such that the aluminum conduit does not come in contact with concrete, CMU, brick or mortar.

3.02 CONCEALED AND EMBEDDED CONDUITS

- A. Conduits are permitted to be installed concealed and/or embedded with the following requirements:
 - Conduits installed embedded within concrete floors or walls shall be located so as not to affect the designed structural strength of the floor or wall. Embedded conduits shall be installed in accordance with Standard Detail 0331604 and ACI-318.
 - 2. Where conduit bends emerge from concrete embedment, none of the curved portion of the bend shall be visible. Only the straight portion of the bend shall be visible. The straight portion shall emerge perpendicular to the embedment (i.e., neatly oriented 90-degrees to floor/slab/grade). Conduits that emerge in a non-perpendicular orientation are not acceptable.

CONDUIT CAM #25-0925 Exhibit 1D Page 1263 of 2050

- 3. Where multiple conduits emerge from concrete embedment or from concealment below a concrete floor, ample clear space shall be provided between conduits to allow for the appropriate and required conduit termination fittings to be installed.
- 4. Conduits installed embedded within concrete encasement of any kind shall be installed such that conduit couplings for parallel conduits are staggered so that they are not side by side.
- B. Conduits are NOT permitted to be installed concealed and/or embedded for the following situations:
 - 1. Conduits shall not be installed embedded within any water-bearing floors or walls.
 - 2. Conduits shall not be installed embedded within any liquid containment area floors or walls.

3.03 CONDUIT USES AND APPLICATIONS

A. Rigid Conduit

1. Rigid conduit for non-hazardous areas shall be furnished and installed in the materials of construction as follows:

Rigid Conduit for Non-Hazardous Areas

	Conduit Category by Wirir	ng / Circuit Type		
Installation Area Designation / Scenario	Power and Control	Instrumentation		
Exposed in outdoor areas	Rigid aluminum conduit	Same as Power and Control		
Concealed within underground concrete-encased ductbanks	Rigid galvanized steel conduit	Rigid galvanized steel conduit		
Direct-buried conduits (where specifically permitted)	Schedule 80 rigid non- metallic PVC conduit	Rigid galvanized steel conduit		
Concealed within elevated concrete slabs	Rigid galvanized steel conduit	Rigid galvanized steel conduit		
Concealed below concrete slabs (within earth or fill material)	Rigid galvanized steel conduit	Rigid galvanized steel conduit		
Emerging from concealment within or below a concrete floor and transitioning to exposed conduit (Reference Detail 1611102)	Rigid galvanized steel conduit	Same as Power and Control		

2. Rigid conduit for hazardous areas shall be furnished and installed in the materials of construction as follows:

Rigid Conduit for Hazardous Areas

	Conduit Category by Wirir	ng / Circuit Type		
Installation Area Hazard / Scenario	Power and Control	Instrumentation		
Exposed in Class I and II areas (Division 1 and Division 2)	Rigid Galvanized Steel Conduit	Same as Power and Control		

3. The tables for the materials of construction for rigid conduits are intended to exhaustively cover all possible scenarios and installation areas under this Contract. However, if a scenario or installation area is found that is not explicitly governed by these tables, it shall be assumed for bid purposes that the conduit material of construction is to be rigid galvanized steel. This discrepancy shall be brought to the attention of the Engineer (in writing) immediately for resolution.

B. Conduit Bends

- 1. All conduit bends shall be the same material of construction as the rigid conduit listed in the tables above, with the following exceptions:
 - a. All 90-degree bends or combinations of adjacent bends that form a 90-degree bend where concealed within concrete or below a concrete slab shall be rigid galvanized steel.
- 2. Field fabricated bends of metallic conduit shall be made with a bending machine and shall have no kinks. Field fabricated standard radius and long radius bends shall have minimum bending radii in accordance with the associated tables in Part 2 herein.
- 3. Field bending of non-metallic conduits is not acceptable, factory fabricated bends shall be used.

C. Flexible Conduit

- 1. Flexible conduit shall only be installed for the limited applications specified herein. Flexible conduit shall not be installed in any other application without written authorization from the Engineer. Acceptable applications are as follows:
 - a. Connections to lighting transformers
 - b. Where specifically indicated in the Standard Details

- 2. Flexible conduit length shall be limited to three (3) feet, maximum. Flexible conduit shall not be installed buried or embedded within any material.
- 3. Unless otherwise specified herein, flexible conduits shall be installed in accordance with the Installation Guidelines published within NEMA RV-3.
- 4. Flexible conduit for non-hazardous areas shall be furnished and installed in the materials of construction as follows:

Flexible Conduit for Non-Hazardous Areas

	Conduit Category by Wiring / Circuit Type			
Installation Area Designation / Scenario	Power and Control	Instrumentation		
Exposed in outdoor areas	Liquid-tight flexible metal conduit	Same as Power and Control		

5. For Class I, Division 1 hazardous areas, the NEC does not permit the installation of flexible conduit. In lieu of flexible conduit in these areas, flexible conduit couplings shall be installed as specified in Part 2 herein. Flexible conduit for all other hazardous areas shall be furnished and installed in the materials of construction as follows:

Flexible Conduit for Hazardous Areas

	Conduit Category by Wiring / Circuit Type				
Installation Area Hazard / Scenario	Power and Control	Instrumentation			
Exposed in Class I, Division 2 areas	Liquid-tight flexible metal conduit	Same as Power and Control			

3.04 CONDUIT FITTING USES AND APPLICATIONS

A. General

- 1. Conduit fittings shall be furnished and installed in the materials of construction as indicated in Part 2, herein. Conduit fitting materials of construction are dependent on the material of construction used for the associated conduit.
- 2. Conduit fittings shall be provided in the trade size and configuration required to suit the application.

B. Conduit Bodies

- 1. Conduit bodies shall be installed where wire pulling points are desired or required, or where changes in conduit direction or breaking around beams is required.
- 2. Where conduit bodies larger than trade size 2 inches are intended to be used as a pull-through fitting during wire installation, oversized or elongated conduit bodies shall be used. Oversized or elongated conduit bodies shall not be required if the conduit body is intended to be used as a pull-out point during wire installation.

C. Conduit Nipples and Unions

1. Conduits with running threads shall not be used in place of 3-piece couplings (unions) or close nipples. After installation of a conduit fitting of any kind, there shall be no more than ¼ inch of exposed threads visible. Factory fabricated all-thread nipples may be used between adjacent enclosures, however, the same restriction applies regarding the length of exposed threads that are visible.

D. Conduit Expansion and Deflection Fittings

- Conduit expansion fittings shall be installed where required by the NEC and where indicated on the Drawings. Expansion fittings shall also be installed for exposed straight metallic conduit runs of more than 75 feet, in both indoor and outdoor locations. Expansion fittings for runs of non-metallic conduit shall be installed in accordance with the NEC.
- 2. Conduit deflection fittings shall be installed where required by the NEC and where conduits are installed (exposed and concealed) across structural expansion joints.
- Unless otherwise specified herein, conduit expansion and deflection fittings shall be installed in accordance with the Installation Guidelines published within NEMA FB 2.40.

E. Conduit Seals

1. Conduit seals shall be installed for conduits installed within or associated with hazardous areas and other areas as required by the NEC.

F. Conduit Termination Fittings

- 1. Where conduits terminate at enclosures with a NEMA 4X rating and the enclosure does not have integral conduit hubs, an appropriately sized watertight conduit hub shall be installed to maintain the integrity of the enclosure. The use of locknuts with integral gasket in lieu of watertight conduit hubs is not acceptable.
- Where conduits terminate at enclosures that do not require conduit hubs, a two-locknut system shall be used to secure the conduit to the enclosure. One locknut shall be installed on the outside of the enclosure, and the other inside, drawn tight against the enclosure wall. The locknut on the interior of the enclosure shall be the

type with integral bonding lug, or a conduit bonding bushing may be used in place of the interior locknut.

3. Conduits shall not be installed such that conduit fittings penetrate the top of any enclosure located outdoors, except in cases where specifically required by the serving electric utility. Conduits which serve outdoor equipment or an enclosure from above shall instead be routed into the side of the enclosure at the bottom. The conduit termination fitting shall be provided with a conduit drain to divert moisture from the raceway away from the enclosure.

3.05 MISCELLANEOUS

A. Conduit Periphery Sealing

- Unless otherwise indicated on the Drawings, below-grade conduit penetrations through exterior walls shall be sealed around the periphery using the appropriate products specified in Part 2 herein.
- 2. Unless otherwise indicated on the Drawings, all conduit penetrations through interior walls and floors and above-grade exterior walls shall be sealed using conduit sleeves and caulk as specified in Part 2 herein. Alternatively, where concrete or masonry walls/floors are penetrated, mortar may be used to seal around the conduit periphery for conduit penetrations through interior walls and floors and above-grade exterior walls.
- 3. Conduit penetrations through fire-rated walls as floors shall be made with the appropriate fire rated penetration product.

B. Conduit Interior Sealing

- 1. All conduits (including spares) entering a structure below grade shall be sealed on the interior of the conduit against water ingress. Sealing shall be at an accessible location in the conduit system located within the building structure and shall be via one of the methods specified in Part 2 herein. If conduit sealing cannot be achieved at an accessible location within the building structure, sealing shall be placed in the conduits in the nearest manhole or handhole outside the structure.
- Conduit interior sealing shall not be installed until conductors inside are tested and test results are deemed acceptable by the Engineer. Conduit interior sealing shall be installed prior to energization of the conductors inside.

3.06 CONDUIT IDENTIFICATION

A. Exposed conduits shall be identified at the source, load, and all intermediate components of the raceway system. Examples of intermediate components include but are not limited to junction boxes, pull boxes, and disconnect switches. Identification shall be by means of an adhesive label with the following requirements:

- 1. Labels shall consist of an orange background with black text. A line of text shall be included to indicate the load name (e.g. Pump P-1001).
- 2. For conduits trade sizes 3/4 inch through 1-1/2 inch, the text shall be a minimum 18-point font. For conduits trade size 2 inch and larger, the text shall be a minimum 24-point font.
- 3. Label height shall be 3/4 inch minimum, and length shall be as required to fit required text. The label shall be installed such that the text is parallel with the axis of the conduit. The label shall be oriented such that the text can be read without the use of any special tools or removal of equipment.
- 4. Labels shall be installed after each conduit is installed and, if applicable, after painting. Labels shall be printed in the field via the use of a portable label printing system using thermal transfer technology. Handwritten labels are not acceptable.
- 5. Labels shall be made of permanent vinyl with adhesive backing. Labels made of any other material are not acceptable.
- B. Conduits that are not exposed but installed beneath free standing equipment enclosures shall be identified by means of a plastic tag with the following requirements:
 - 1. The tag shall be made of white Tyvek material, and have an orange label with black text, as described above, adhered to it. Text for the label shall be the conduit number as indicated in the conduit and wire schedules.
 - 2. The tag shall be affixed to the conduit by means of a nylon cable tie. The tag shall be of suitable dimensions to achieve a minimum text size of 18 points.
- C. Conduits for lighting and receptacle circuits shall not require identification.
- D. Any problems or conflicts with meeting the requirements above shall immediately be brought to the attention of the Engineer for a decision.

3.07 TESTING

- A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 01. The following tests are required:
 - 1. All conduit installed below grade or concrete encased shall be tested to ensure continuity and the absence of obstructions by pulling through each conduit a swab followed by a mandrel 85% of the conduit inside diameter. After testing, all conduits shall be capped after installation of a suitable pulling rope.

- END OF SECTION -

SECTION 16118 UNDERGROUND ELECTRICAL

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install underground duct systems as specified herein and as indicated on the Drawings. The work shall be complete and shall include excavation, concrete construction, backfilling, and all materials, items, and components required for a complete system.
- B. The provisions of this Section are applicable to all underground conduit work. All work shall be coordinated with that of the various utility companies and other Contractors. The Contractor shall adhere to all utility company requirements including the serving electric utility.
- C. Reference the following Specification Sections:
 - 1. Section 16000 Basic Electrical Requirements
 - 2. Section 16111 Conduit
 - 3. Section 16170 Grounding and Bonding
 - 4. Applicable sections of Division 2, Sitework
 - 5. Section 03200 Concrete Reinforcement
 - 6. Section 03300 Cast-In-Place Concrete

1.02 CODES AND STANDARDS

- A. Products specified herein shall be designed, manufactured, and/or listed to the following standards as applicable:
 - 1. AASHTO H20
 - 2. ANSI/SCTE 77-2010 Specification for Underground Enclosure Integrity

1.03 SUBMITTALS

A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 – Submittal, the Contractor shall obtain from the equipment manufacturer and submit Shop Drawings. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to, the following:
 - 1. Product data sheets.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. The material covered by this Specification is intended to be standard material of proven performance as manufactured by reputable concerns. Material shall be fabricated, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as specified herein and indicated on the Drawings.

2.02 DUCT SYSTEM

- A. The underground duct system shall be comprised of conduits, conduit bends, and conduit fittings as specified in Section 16111 Conduit. Conduits shall be encased in reinforced concrete envelopes, unless otherwise specified herein or indicated on the Drawings.
- B. Base and intermediate conduit spacers shall be furnished to provide a minimum of two-inch (2") separation between conduits. Conduit spacers shall be provided in the proper size as required for the conduit that they secure. For example, a 4" conduit spacer shall not be used to secure a 2" conduit. Conduit spacers shall be as manufactured by Carlon Electrical Products Company, Aeroquip Corporation, Underground Devices, Incorporated, or Engineer approved equal.

PART 3 - EXECUTION

3.01 GENERAL

A. The underground duct system shall be installed as specified herein, indicated on the Drawings, and in accordance with manufacturers' instructions.

3.02 DUCT SYSTEM

A. All underground conduits shall be encased in concrete and shall be reinforced. Encasement and reinforcement shall be as indicated in the Standard Details. Concrete

shall be furnished and installed in accordance with Section 03300 – Cast-In-Place Concrete. Reinforcing steel shall be furnished and installed in accordance with Section 03200 – Concrete Reinforcement.

- B. Concrete pours shall be complete. Partial pours in general shall not be permitted. Where a complete pour is impractical, written authorization shall be obtained from the Engineer for the partial pour.
- C. Conduit ductbank elevations at the handholes shall be based on minimum ductbank cover as indicated in the Standard Details, or deeper to avoid conflicts with other obstacles. Where deviation is necessary to clear unforeseen obstacles, the elevations may be changed after authorization by the Engineer.
- D. Slope all conduits continuously away from structures and buildings with a minimum slope of 3" per 100' unless otherwise indicated on the Drawings.
- E. The minimum clearance from the top of the concrete encasement and finished grade shall be as indicated in the Standard Details, except where otherwise accepted in writing by the Engineer or shown on the Drawings.
- F. Care shall be exercised during excavation for the duct banks to prevent digging too deep. Backfilling of low spots with earth fill will not be permitted unless thoroughly compacted and acceptable to the Engineer.
- G. Where no specific ductbank arrangement is shown on the Drawings, the Contractor shall arrange conduits within each ductbank based on field conditions. Spare conduits shown going from ductbanks into buildings or structures shall be stubbed up in the location(s) as indicated on the Drawings.
- H. The ends of the bare copper cables embedded in the concrete ductbank shall be connected to structure and/or building ground rings where the ductbanks terminate as specified herein.
- I. Care shall be exercised and temporary plugs shall be installed during installation to prevent the entrance of concrete, mortar, or other foreign matter into the conduit system. Conduit spacers shall be utilized to support conduit during the pouring of concrete to prevent movement and misalignment of the conduits. Conduit spacers shall be installed in accordance with manufacturer's instructions unless otherwise noted. Horizontal spacing of conduit spacers along ductbank shall be as indicated on the Standard Details.
- J. Construct underground structures to provide shear strength. Construct underground structures to provide for keying the concrete encasement of the duct line into the wall of the structure. Use vibrators when this portion of the encasement is poured to ensure a seal between the encasement and the wall of the structure.
- K. Six (6) inches above all duct banks, the Contractor shall furnish and install a two (2) inch wide red plastic electrical hazard tape. Tapes shall be metallic detectable type and shall

have a continuous message in bold black letters: "ELECTRIC LINE BURIED BELOW." Tape shall be Detectable Identoline by Brady or Engineer approved equal.

- L. The Contractor shall perform all earthwork including excavation, backfill, bedding, compaction, shoring and bracing, grading, and restoration of surfaces and seeded areas disturbed during the execution of the Work.
- M. All conduit joints in the duct system shall be staggered such that adjacent conduits do not have joints in the same location.

3.03 TESTING

A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 1. The following tests are required:

1. Field tests

- a. Field tests for all completed duct systems shall consist of pulling a swab through each conduit followed by a mandrel equal in size to 85% of the conduit inside diameter.
- After testing, all conduits shall be capped after installation of a suitable pull rope.
 All field tests shall be witnessed by the Engineer.

- END OF SECTION -

SECTION 16123 LOW VOLTAGE WIRE AND CABLES

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish, install, connect, test, and place in satisfactory operating condition all low voltage wire and cable indicated on the Drawings, as specified herein, and/or required for proper operation. The work of connecting cables to equipment and devices shall be considered a part of this Section. All appurtenances required for the installation of wire and cable systems shall be furnished and installed by the Contractor.
- B. The scope of this Section does not include internal wiring factory installed by electrical equipment manufacturers.
- C. Reference the following Specification Sections:
 - 1. Section 16000 Basic Electrical Requirements
 - 2. Section 16130 Boxes

1.02 CODES AND STANDARDS

- A. All low voltage wire, cable, and appurtenances shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL).
- B. Low voltage wire, cable, and appurtenances shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. American National Standards Institute (ANSI)/Institute of Electrical and Electronic Engineers (IEEE):
 - a. IEEE 1202 Standard for Flame Testing of Cables.
 - 2. American Society for Testing and Materials (ASTM):
 - a. ASTM B3 Standard Specification for Soft or Annealed Copper Wire.
 - ASTM B8 Standard Specification for Concentric-Lay-Stranded Copper Conductors, Hard, Medium-Hard, or Soft.
 - c. ASTM B33 Standard Specification for Tin-Coated Soft or Annealed Copper Wire for Electrical Purposes.
 - d. ASTM D69 Standard Test Methods for Friction Tapes.
 - e. ASTM D4388 Standard Specification for Nonmetallic Semi-Conducting and Electrically Insulating Rubber Tapes.

- 3. Insulated Cable Engineers Association (ICEA):
 - a. ICEA S-58-679 Standard for Control, Instrumentation and Thermocouple Extension Conductor Identification.
 - b. ICEA T-29-250 Conducting Vertical Cable Tray Flame Tests with Theoretical Heat Input Rate of 210,000 B.T.U./Hour.
- 4. National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).
- 5. Underwriters Laboratories (UL):
 - a. UL 13 Standard for Power-Limited Circuit Cables.
 - b. UL 44 Thermoset-Insulated Wires and Cables.
 - c. UL 83 Thermoplastic-Insulated Wires and Cables.
 - d. UL 486A-486B Standard for Safety Wire Connectors
 - e. UL 1277 Standard for Electrical Power and Control Tray Cables with Optional Optical-Fiber Members.
 - f. UL 1581 Reference Standard for Electrical Wires, Cables, and Flexible Cords.
 - g. UL 1685 Standard for Vertical-Tray Fire-Propagation and Smoke-Release Test for Electrical and Optical-Fiber Cables.
 - h. UL 2250 Standard for Instrumentation Tray Cable.
 - i. UL 2556 Wire and Cable Test Methods.

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 Submittal, the Contractor shall obtain from the wire and cable manufacturer and submit the following:
 - 1. Shop Drawings
 - 2. Reports of Field Tests
 - Circuit Logs
- B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed material's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible Submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - 1. Product data sheets for the following:
 - a. Wire and cable
 - The product data sheets for wire and cable for up to four (4) manufacturers
 for each type of wire/cable specified herein will be reviewed if they are
 submitted at the same time under the same submittal cover for simultaneous
 review.
 - b. Power and control wire terminations, including wire ferrules
 - c. Instrumentation cable terminations
 - d. Pulling lubricant.
 - 2. Cable pulling calculations (if required).
 - 3. Wiring identification methods and materials.
- D. The shop drawing information shall be complete and organized in such a way that the Engineer can determine if the requirements of these specifications are being met. Copies of technical bulletins, technical data sheets from "soft-cover" catalogs, and similar information which is "highlighted" or somehow identifies the specific equipment items the Contractor intends to provide are acceptable and shall be submitted.

1.05 CABLE PULLING CALCULATIONS

- A. Prior to the installation of the wire and cable specified herein, the Contractor shall submit cable pulling calculations for Engineer review and approval when all of the following are true:
 - 1. The amount of cable to be installed will be greater than 200 linear feet between pull points.
 - 2. The installation will have one or more bends.
 - 3. The wire/cable is size #1/0 AWG and larger.

B. Cable pulling calculations shall be performed by a Professional Engineer (P.E.) licensed in the State or Commonwealth in which the project is located. Calculations shall define pulling tension and sidewall loading (sidewall bearing pressure values).

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. The wire and cable to be furnished and installed for this project shall be the product of manufacturers who have been in the business of manufacturing wire and cable for a minimum of ten (10) years. Wire and cable shall be designed, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as specified herein and indicated on the Drawings.

2.02 POWER AND CONTROL WIRE AND CABLE

- A. Power and control wire shall consist of insulated copper conductors with a nylon (or equivalent) outer jacket. Conductor insulation shall be rated 90°C for dry locations, 75°C for wet locations, and 600V. Insulated conductors shall be UL 83 Listed as NEC Type THHN/THWN.
- B. Unless specified otherwise herein, conductors shall be stranded copper per ASTM B-8 and B-3, with Class B or C stranding contingent upon the size. Power conductors for lighting and receptacle branch circuits shall be solid copper per ASTM B-3.
- C. Power conductor size shall be no smaller than No. 12 AWG and Control conductor size shall be no smaller than No. 14 AWG.
- D. Multi-conductor cable assemblies shall include a grounding conductor and an overall PVC jacket. The jacket shall be PVC and resistant to abrasion, sunlight, and flame in accordance with UL 1277. Multi-conductor cable assemblies shall be UL 1277 Listed as NEC Type TC (Power and Control Tray Cable).
- E. Power wire and cable shall be as manufactured by the Okonite Company, the Southwire Company, General Cable, Encore Wire, or Engineer approved equal.

2.03 INSTRUMENTATION CABLE

A. For single-analog signal applications, instrumentation cable shall consist of a single, twisted pair or triad of individually insulated and jacketed copper conductors with an overall cable shield and jacket. Conductor insulation shall be rated 90°C in both wet and dry locations, and 600V. The jacket shall be PVC and resistant to abrasion, sunlight, and flame in accordance with UL 1277. Cable shall be UL 1277 Listed as NEC Type TC (Power and Control Tray Cable).

- B. For multiple-analog signal applications, instrumentation cable shall consist of multiple, twisted pairs or triads (i.e., groups) of individually insulated and jacketed copper conductors with individual pair/triad shields (i.e., group shields) and an overall cable shield and jacket. Conductor insulation shall be rated 90°C in both wet and dry locations, and 600V. The jacket shall be PVC and resistant to abrasion, sunlight, and flame in accordance with UL 1277. Cable shall be UL 1277 Listed as NEC Type TC (Power and Control Tray Cable).
- C. Cable and group shields shall consist of overlapped aluminum/polyester tape/foil providing 100% coverage. Instrumentation cables shall include an overall copper shield drain wire. Cables containing multiple twisted pairs or triads shall also include group shield drain wires.
- D. Conductors, including drain wires, shall be tin or alloy coated (if available), soft, annealed copper, stranded per ASTM B-8, with Class B stranding unless otherwise specified.
- E. Instrumentation signal conductor size shall be no smaller than No. 16 AWG.
- F. Instrumentation cable shall be Okoseal-N Type P-OS (for single pair or triad applications) or Okoseal-N Type SP-OS (for multiple pair or triad applications) as manufactured by the Okonite Company, Belden equivalent, Southwire Company equivalent, or Engineer approved equal.

2.04 CONDUCTOR IDENTIFICATION

- A. Conductors shall be identified using a color-coding method. Color coding for individual power, control, lighting, and receptacle conductors shall be as follows:
 - 1. 480/277V AC Power
 - a. Phase A BROWN
 - b. Phase B ORANGE
 - c. Phase C YELLOW
 - d. Neutral GREY
 - 2. 120/208V or 120/240V AC Power
 - a. Phase A BLACK
 - b. Phase B RED
 - c. Phase C BLUE
 - d. Neutral WHITE

- 3. DC Power
 - a. Positive Lead RED
 - b. Negative Lead BLACK
- 4. DC Control
 - a. All wiring BLUE
- 5. 120 VAC Control
 - a. 120 VAC control wire shall be RED except for a wire entering a motor control center compartment, motor controller, or control panel which is an interlock. This interlock conductor shall be color coded YELLOW. For the purposes of this Section, an interlock is defined as any wiring that brings voltage into the abovementioned equipment from a source outside that equipment.
- 6. 24 VAC Control
 - a. All wiring ORANGE
- 7. Equipment Grounding Conductor
 - a. All wiring GREEN
- B. Individual conductors No. 2 AWG and smaller shall have factory color coded insulation. It is acceptable for individual conductors larger than No. 2 AWG to be provided with factory color coded insulation as well, but it is not required. Individual conductors larger than No. 2 AWG that are not provided with factory color coded insulation shall be identified by the use of colored tape in accordance with the requirements listed in Part 3 herein. Insulation colors and tape colors shall be in accordance with the color-coding requirements listed above.
- C. Conductors that are part of multi-conductor cable assemblies shall have black insulation. The conductor number shall be printed on each conductor's insulation in accordance with ICEA S-58-679, Method 4. Each conductor No. 2 AWG and smaller within the cable assembly shall also be identified with a heat shrink tag with color coded background. Each conductor larger than No. 2 AWG within the cable assembly shall also be identified by the use of colored tape. Heat shrink tags and colored tape shall be in accordance with the requirements listed in Part 3 herein. Tape color and heat shrink tag background color shall be in accordance with the color-coding requirements listed above.

2.05 CABLE PULLING LUBRICANTS

A. Cable pulling lubricants shall be non-hardening type and approved for use on the type of cable installed. Lubricant shall be Yellow #77 Plus by Ideal, Cable Gel by Greenlee, Poly-Gel by Gardner Bender, or equal.

PART 3 - EXECUTION

3.01 WIRE AND CABLE INSTALLATION

A. General

- 1. All wire and cable furnished under this Contract, including wire and cable furnished under other Divisions, shall be installed in raceways (e.g., conduit) unless specifically noted otherwise.
- Wire and cable shall be installed as specified herein and indicated on the Drawings. Unless specifically indicated otherwise on the Drawings, wire and cable shall be installed in separate raceways according to wiring type. For example, power wiring shall not be combined with control wiring, and control wiring shall not be combined with instrumentation wiring.
- 3. Wire shall be furnished and installed as single conductor cables, with limited exceptions. Multi-conductor cable assemblies shall only be installed where indicated on the Drawings, required by the NEC, or after obtaining written permission from the Engineer.
- 4. Where instrumentation cables are installed in control panels, motor controllers, and other locations, the Contractor shall arrange wiring to provide maximum clearance between these cables and other conductors. Instrumentation cables shall not be installed in same bundle with conductors of other circuits.
- 5. Instrumentation cable shielding shall be continuous and shall be grounded at one point only.

B. Splices

- Splices shall not be allowed in power or control wire and cable unless approved in writing by the Engineer. If unique field conditions exist or pulling calculations indicate that splices may be required, the Contractor shall submit a detailed request indicating why splices are required to the Engineer. The Engineer shall be under no obligation to grant such request.
- 2. Splicing materials shall be UL 486A Listed barrel type butt splice connectors and heat shrink tubing as manufactured by 3M, Ideal, or equal. The use of screw-on wire connectors (wire nuts) shall only be permitted for lighting and receptacle circuits.
- 3. No splicing of instrumentation cable is permitted.

C. Wire and Cable Sizes

1. The sizes of wire and cable shall be as indicated on the Drawings, or if not shown, as approved by the Engineer. If required due to field routing, the size of conductors

and respective conduit shall be increased so that the voltage drop measured from source to load does not exceed 2-1/2%.

D. Additional Conductor Identification

- In addition to the color-coding identification requirements specified in Part 2 herein, individual conductors shall be provided with heat shrinkable identification tags. Identification tags for individual conductors shall have a white background where the conductor insulation is colored. Identification tags for individual conductors shall have a colored background where the conductor insulation is black. Background color shall match that of the taping provided on the individual black conductors.
- 2. Multi-conductor cables shall be provided with heat shrinkable identification tags in accordance with Part 2 herein.
- 3. All wiring shall be identified at each point of termination. This includes but is not limited to identification at the source, load, and in any intermediate junction boxes where a termination is made. The Contractor shall meet with the Owner and Engineer to come to an agreement regarding a wire identification system prior to installation of any wiring. Wire numbers shall not be duplicated.
- 4. Wire identification shall be by means of a heat shrinkable sleeve with appropriately colored background and black text. Wire sizes #14 AWG through #10 AWG shall have a minimum text size of 7 points. Wire sizes #8 AWG and larger shall have a minimum text size of 10 points. Sleeves shall be of appropriate length to fit the required text. The use of handwritten text for wire identification shall not be permitted.
- 5. Sleeves shall be suitable for the size of wire on which they are installed. Sleeves shall not be heat-shrunk onto control cables. Tags shall remain loose on cable to promote easier identification. For all other applications, sleeves shall be tightly affixed to the wire and shall not move. Sleeves shall be heat shrunk onto wiring with a heat gun approved for the application. Sleeves shall not be heated by any means which employs the use of an open flame. The Contractor shall take special care to ensure that the wiring insulation is not damaged during the heating process.
- 6. Sleeves shall be installed prior to the completion of the wiring terminations and shall be oriented so that they can be easily read.
- 7. Sleeves shall be polyolefin as manufactured by Brady, Seton, Panduit, or equal.
- 8. Wire identification in manholes, handholes, pull boxes, and other accessible components in the raceway system where the wiring is continuous (no terminations are made) shall be accomplished by means of a tag installed around the bundled group of individual conductors or around the outer conductor jacket of a multi-conductor cable. Identification shall utilize a FROM-TO system. Each group of conductors shall consist of all the individual conductors in a single conduit or duct.

LOW VOLTAGE WIRE

AND FAB 528

Exhibit 1D

Page 1281 of 2050

The tag shall have text that identifies the bundle in accordance with the 'FROM' and 'TO' column for that specific conduit number in the conduit and wire schedule. Minimum text size shall be 10 point. The tag shall be affixed to the wire bundle using nylon wire ties and shall be made of polyethylene as manufactured by Brady, Seton, Panduit, or equal.

9. Where colored tape is used to identify cables, it shall be wrapped around the cable with a 25% overlap and shall cover at least 2 inches of the cable.

E. Wiring Supplies

1. Rubber insulating tape shall be in accordance with ASTM D4388. Friction tape shall be in accordance with ASTM D69.

F. Training of Cable in Handholes

 The Contractor shall furnish all labor and material required to train cables around cable handholes. Sufficient length of cable shall be provided in each handhole so that the cable can be trained and racked in an approved manner. In training or racking, the radius of bend of any cable shall be not less than the manufacturer's recommendation. The training shall be done in such a manner as to minimize chaffing.

G. Conductor Terminations

- Where wires are terminated at equipment which requires lugs, connections shall be made by solderless mechanical lug, crimp type ferrule, or irreversible compression type lugs. Reference individual equipment Specification Sections as applicable for additional termination requirements.
- For conductors with stranding other than Class B or C, a UL 486A Listed wire ferrule shall be installed prior to each conductor termination. Ferrules shall be suitable for the size of conductors and shall be made of a material that is compatible with the conductors. Ferrules shall be crimped on in accordance with the ferrule manufacturer's instructions.
- 3. Where enclosure sizes and sizes of terminals at limit switches, solenoid valves, float switches, pressure switches, temperature switches, and other devices make terminations impractical due to the size of the field wiring, the Contractor shall terminate field wiring in an adjacent junction box per the requirements of Section 16130 Boxes, complete with terminal strips. Contractor shall install the smaller wiring from the device to the junction box in a conduit, using the terminal strip as the means for joining the two different wire sizes. Splicing of wires in lieu of using terminal strips is not acceptable.
- 4. The cables shall be terminated in accordance with the cable and/or termination product manufacturer's instructions for the particular type of cable.

LOW VOLTAGE WIRE

AND ABLES

Exhibit 1D

Page 1282 of 2050

- 5. To minimize oxidation and corrosion, selected wire and cable shall be terminated using an oxide-inhibiting joint compound recommended for electrical connections. The compound shall be Penetrox E for copper-to-copper connections, and Penetrox A for all other connections, as manufactured by Burndy Electrical, or equal. The joint compound shall be used in the following installations:
 - a. Terminations in all Class I, Division 1 and 2 hazardous areas.
- 6. All spare conductors shall be terminated on terminal blocks mounted within equipment or junction boxes. Unless otherwise noted, coiling up of spare conductors within enclosure is not acceptable.

H. Pulling Temperature

1. Cable shall not be installed when the temperature of the jacket is such that damage will occur due to low temperature embrittlement. When cable will be pulled with an ambient temperature of 40°F or less within a three (3) day period prior to pulling, the cable reels shall be stored three (3) days prior to pulling in a protected storage area with an ambient temperature of 55°F or more. Cable pulling shall be completed during the workday for which the cable is removed from the protected storage. Any cable reels with wire remaining on them shall be returned to storage at the completion of the workday.

I. Circuit Log

- 1. The Contractor shall maintain a written log of installed circuit lengths for all single-phase and three-phase power circuits operating at 208VAC or greater. The log shall be organized in a tabular format, recording the following items for each circuit:
 - a. Circuit ID or Conduit ID(s) as shown on the Drawings.
 - b. From (originating equipment).
 - c. To (terminating equipment).
 - d. Conductor sizes and counts.
 - e. Conductor length.

3.02 TESTING

- A. All testing shall be performed in accordance with the requirements of the General Conditions and Division 1. The following tests are required:
 - 1. Shop Test

a. Wires and cables shall be tested in accordance with the applicable ICEA Standards. Wire and cable shall be physically and electrically tested in accordance with the manufacturer's standards.

2. Field Tests

- a. After installation, all wires and cables shall be tested for continuity. Testing for continuity shall be "test light" or "buzzer" style.
- b. After installation, wires and cables shall be tested for insulation resistance levels between conductors of the same circuit and between conductor and ground as follows:
 - For #8 AWG and larger 600V wire and cable, apply 1,000 VDC from a Megohmmeter for one (1) minute. Resistance shall be no less than 100 Megohms.
 - Instrumentation signal cable shall be tested from conductor to conductor, conductor to shield, and conductor to ground using a Simpson No. 260 voltohmmeter or approved equal. The resistance value shall be 200 Megohms or greater.
 - 3) Insulation resistance testing is not required for power and control cables smaller than #8 AWG.
- c. Wires and cables shall be tested after required terminations are made, but before being connected to any equipment.
- d. If tests reveal defects or deficiencies, the Contractor shall make the necessary repairs or shall replace the cable as directed by the Engineer, without additional cost to the Owner. All conductors of a multi-phase circuit shall be replaced if one conductor fails the required testing. If part of a multi-set (parallel conductors per phase) circuit fails testing, only the set containing failure shall be replaced.
- e. All tests shall be made by and at the expense of the Contractor who shall supply all testing equipment. Test reports shall be submitted to the Engineer.

Exhibit A Test Data – Megohms Test No							
Date:		Company:					
Time:			Location:				
Circuit:	Circuit Length:	Aerial:	Duct:	Buried:	No. of Conductors	Size:	AWG MCM Shield:
Insulation Material:			Insulation Thickness:		Voltage Rating: Age		Age:
Type: Pothead Terminal					Location:	Indoors Outdoors	
Number and Type of Joints:							
Recent Operating History:							
Manufacturer:							
State if Potheads or Terminals were grounded during test:							
List associated equipment included in test:							
Miscellaneous Information:							

LOW VOLTAGE WIRE AND CABLES

Exhibit A Test Data – Megohms Test No							
Part Tested:		Test Performed: Hours/Days: After Shutdown:					
Grounding Time:			Dry Bulb Temperature: Wet Bulb Temperature:				
Test Voltage:		Equipment Temperature: How Obtained: Relative Humidity: Absolute Humidity: Dew Point:					
Megohmmeter: Serial Number: Range: Voltage: Calibration Date:							
Test Connections	To Line To Earth To Ground	To Line To Earth To Ground	To Line To Earth To Ground	Test Connections	To Line To Earth To Ground	To Line To Earth To Ground	To Line To Earth To Ground
1/4 Minute				5 Minutes			
1/2 Minute				6 Minutes			
3/4 Minute				7 Minutes			
1 Minute				8 Minutes			
2 Minutes				9 Minutes			
3 Minutes				10 Minutes			
4 Minutes				10/1 Minute Ratio			

Remarks:

- END OF SECTION -

CAM #25-0925 Exhibit 1D Page 1286 of 2050

SECTION 16130 BOXES

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install all pull boxes, junction boxes and outlet boxes as specified herein, indicated on the Drawings, and as required. Requirements for other boxes and enclosures are not necessarily included in this Section. Reference each specific equipment specification section for requirements related to that equipment's respective enclosure.
- B. Reference the following Specification Sections:
 - 1. Section 16000 Basic Electrical Requirements
 - 2. Section 16111 Conduit
 - 3. Section 16195 Electrical Identification

1.02 CODES AND STANDARDS

- A. All boxes shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL).
- B. Boxes shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. National Electrical Manufacturers Association (NEMA):
 - a. NEMA 250 Enclosures for Electrical Equipment.
 - 2. National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).
 - 3. Underwriters Laboratories (UL):
 - a. UL 50 Enclosures for Electrical Equipment, Non-environmental Considerations.
 - b. UL 50E Enclosures for Electrical Equipment, Environmental Considerations.
 - c. UL 514A Metallic Outlet Boxes.
 - d. UL 514C Standard for Non-metallic Outlet Boxes, Flush Device Boxes, and Covers.

e. UL 1203 – Standard for Explosion-proof and Dust-ignition-proof Electrical Equipment for use in Hazardous (Classified) Locations.

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 Submittals, the Contractor shall obtain from the equipment manufacturer(s) and submit the following:
 - 1. Shop Drawings
- B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible Submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - 1. Product data sheets for boxes, terminal strips, and all accessories

1.05 OPERATION AND MAINTENANCE MANUALS

- A. The Contractor shall submit operation and maintenance manuals in accordance with the procedures and requirements set forth in the General Conditions and Division 01.
- B. As-built drawings showing dimensions, internal box layout, terminal strip information, and terminal strip identification information shall be provided for all junction boxes. As-built drawings are not required for pull boxes or outlet boxes.

1.06 IDENTIFICATION

A. Each pull and junction box shall be identified with the box name as indicated on the Contract Drawings (e.g., PJB, CJB) or as directed by the Engineer. A nameplate shall be securely affixed in a conspicuous place on each box. Nameplates shall be as specified in Section 16195 – Electrical Identification.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. The equipment covered by this Specification is intended to be standard equipment of proven performance as manufactured by reputable concerns. Equipment shall be designed, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as shown on the Drawings.

2.02 PULL AND JUNCTION BOXES

A. General

- 1. All pull and junction boxes shall be UL Listed and Labeled.
- 2. Pull and junction boxes shall not be provided with eccentric or concentric knockouts.
- 3. Pull and junction boxes mounted embedded in concrete shall be UL Listed for embedment.
- 4. Where metallic boxes are used, they shall be of all welded construction. Tack welded boxes are not acceptable.

B. Pull Boxes

- 1. Metallic pull boxes in non-hazardous locations and in hazardous locations where general-purpose enclosures are permitted (e.g., Class I, Division 2 locations) shall be provided with a matching gasketed cover. For covers with dimensions of less than 12 inches by 12 inches, the cover shall be held in place by stainless steel machine screws. Other screw types are not acceptable. For covers with dimensions 12 inches by 12 inches and larger, the cover shall be hinged and held in place by 1/4-turn style latches. Latch mechanism shall be all stainless steel. Hinge pins shall be removable.
- 2. Metallic pull boxes in hazardous locations where general-purpose enclosures are not permitted (e.g., Class I, Division 1 locations) shall be provided with a matching gasketed cover. Cover shall be hinged and held in place by stainless steel bolts. Hinge pins shall be removable. Covers shall be installed and bolts torqued in accordance with manufacturer requirements to maintain the hazardous location rating of the enclosure.
- 3. Pull boxes shall not have any wire terminations inside, other than those for grounding/bonding. A ground bar shall be provided with the necessary number of screw type terminals. Twenty (20) percent of the total amount of terminals otherwise required for the pull box (minimum of two) shall be provided as spare terminations. Boxes requiring any other wire terminations shall be furnished and installed in accordance with the requirements for junction boxes herein.

- 4. Pull boxes shall be 6 inches wide by 6 inches tall by 4 inches deep, minimum. For applications requiring larger boxes, the box shall be sized in accordance with the fill requirements and dimensional requirements of the NEC.
- 5. Barriers shall be provided in pull boxes to isolate conductors of different voltages, types, and functions. Barrier material of construction shall match that of the box. Isolation shall be provided between the following groups:
 - a. Power wiring
 - b. AC control wiring
 - c. DC control wiring
 - d. Instrumentation wiring

C. Junction Boxes

- 1. Metallic junction boxes in non-hazardous locations shall be provided with a matching gasketed cover. For covers with dimensions of less than 12 inches by 12 inches, the cover shall be held in place by stainless steel machine screws. Other screw types are not acceptable. For covers with dimensions 12 inches by 12 inches and larger, the cover shall be hinged and held in place by 1/4-turn style latches. Latch mechanism shall be all stainless steel. Hinge pins shall be removable.
- 2. Metallic junction boxes in hazardous locations shall be provided with a matching gasketed cover. Cover shall be hinged and held in place by stainless steel bolts. Hinge pins shall be removable. Covers shall be installed and bolts torqued in accordance with manufacturer requirements to maintain the hazardous location rating of the enclosure.
- 3. Barriers shall be provided in junction boxes to isolate conductors and terminal blocks of different voltages, types, and functions. Barrier material of construction shall match that of the box. Isolation shall be provided between the following groups:
 - a. Power wiring
 - b. AC control wiring
 - c. DC control wiring
 - d. Instrumentation wiring
- 4. Junction boxes used for lighting and receptacle circuits only shall be allowed to have screw-on (wire nut) type connectors for wire terminations/junctions.
- 5. Junction boxes for all uses other than lighting and receptacle circuits shall be provided with terminal strips, consisting of the necessary number of screw type terminals. Current carrying parts of the terminal blocks shall be of ample capacity to carry the full load current of the circuits connected, with a 10A minimum capacity. Terminal strips shall be rated for the voltage of the circuits connected. A separate

ground bar shall be provided with the necessary number of screw type terminals. Twenty (20) percent of the total amount of terminals otherwise required for the junction box (minimum of two) shall be provided as spare terminations. When barriers are provided within the box, separate terminal strips shall be provided in each barrier area. Terminals shall be lettered and/or numbered to conform to the wiring labeling scheme in place on the project.

6. Junction boxes shall be 6 inches wide by 6 inches tall by 4 inches deep, minimum. For applications requiring larger boxes, the box shall be sized in accordance with the fill requirements and dimensional requirements of the NEC. Terminal blocks (including spare terminals) shall be considered when sizing the junction box.

D. Enclosure Types and Materials

 In non-hazardous locations, pull and junction boxes shall be furnished with the following enclosure type and material of construction, dependent upon the designation of the area in which they are to be installed. Area designations are indicated on the Drawings.

Area Designation	Enclosure Type and Material
All Outdoor Areas	NEMA 4X, Type 316 Stainless Steel

2. In hazardous locations, pull and junction boxes shall be furnished with the following enclosure type and material of construction, dependent upon the classification of the area in which they are to be installed. Area classifications are indicated on the Drawings.

Area Classification	Enclosure Type and Material		
Class I, Division 2, Group D	NEMA 4X, Type 316 Stainless Steel		

2.03 OUTLET BOXES

A. General

1. Outlet boxes shall be provided with a trim appropriate for the wiring device installed inside. An appropriate outlet box trim is required to achieve the NEMA rating of the outlet boxes as specified herein.

B. Surface Mount Outlet Boxes

1. Outlet boxes shall be the deep type, no less than 2.5 inches deep, and be provided with a ground screw inside.

- 2. Outlet boxes shall be provided in single or multi-gang configuration as required, sized in accordance with the requirements of the NEC.
- 3. In non-hazardous locations, outlet boxes shall be furnished with the following enclosure type and material of construction, dependent upon the designation of the area in which they are to be installed. Area designations are indicated on the Drawings.

Area Designation	Enclosure Type and Material		
All Outdoor Areas	NEMA 4X, Cast Aluminum		

- 4. Outlet boxes shall be provided with integral threaded conduit hubs mounted external to the box. Boxes with threaded conduit hubs mounted internal to the box or as a part of the box wall are not acceptable.
- 5. Outlet boxes for NEMA 4X applications shall be furnished with integral external mounting lugs that are accessible from outside the box.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Pull and Junction Boxes

- Pull boxes and junction boxes shall be solidly attached to structural members prior to installation of conduit and set true and plumb. Boxes shall not be supported by their associated conduits.
- 2. Wooden plugs are not permitted for securing boxes to concrete. Appropriately rated anchors specifically suited for use in concrete shall be used.
- 3. Box penetrations for conduits shall be made with a punch tool, and penetrations shall be of the size required for the conduit entry and/or hub. Oversized penetrations in boxes are not acceptable.
- 4. Watertight conduit hubs shall be provided for boxes where a NEMA 4X enclosure rating is specified. Reference Section 16111 Conduit, for conduit hub requirements.
- 5. Pull and junction boxes shall be provided in the enclosure type and material of construction required for the area in which it is installed. Reference the requirements in Part 2 herein, and the area designations indicated on the Drawings.

B. Outlet Boxes

- Outlet boxes shall be solidly attached to structural members prior to installation of conduit and set true and plumb. Boxes shall not be supported by their associated conduits. Boxes with integral external mounting lugs shall be attached with the lugs and shall not be drilled.
- 2. Outlet boxes shall be provided in the material of construction required for the area in which it is installed. Reference the requirements in Part 2 herein, and the area designations indicated on the Drawings.

- END OF SECTION -

SECTION 16170 GROUNDING AND BONDING

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install grounding systems complete in accordance with the requirements established by Article 250 of the NEC. Article 250 of the NEC shall be considered a minimum requirement for compliance with this Specification.
- B. Grounding of all instrumentation and control systems shall be furnished and installed in accordance with the manufacturer/system requirements and IEEE 1100. Conflicts shall be promptly brought to the attention of the Engineer.
- C. Reference Section 16000 Basic Electrical Requirements

1.02 CODES AND STANDARDS

- A. Equipment and materials covered under this Section shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. American National Standards Institute (ANSI)/Institute of Electrical and Electronic Engineers (IEEE):
 - a. IEEE 81 Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System.
 - b. IEEE 1100 Recommended Practice for Power and Grounding Electronic Equipment.
 - 2. National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).
 - 3. Underwriters Laboratories (UL):
 - a. UL 467 Grounding and Bonding Equipment.

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 Submittals, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - 1. Shop Drawings
 - 2. Reports of certified field tests.
- B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - 1. Product data sheets.
 - 2. Drawings and written description of how the Contractor intends to furnish and install the grounding system.

PART 2 – PRODUCTS

2.01 MANUFACTURERS

A. The equipment covered by these specifications shall be standard equipment of proven performance as manufactured by reputable concerns. Equipment shall be designed, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as shown on the Drawings.

2.02 GROUND RODS AND GRID

- A. Ground rods shall be rolled to a commercially round shape from a welded copper-clad steel manufactured by the molten-welding process or by the electroformed process (molecularly bonded). They shall have an ultimate tensile strength of 75,000 pounds per square inch (psi) and an elastic limit of 49,000 psi. The rods shall be not less than 3/4 inch in diameter by 10 feet in length; and the proportion of copper shall be uniform throughout the length of the rod. The copper shall have a minimum wall thickness of 0.010 inch at any point on the rod. Ground rods shall be UL 467 Listed. The ground rods shall be manufactured by Erico Products, Blackburn, or Engineer approved equal.
- B. Except where specifically indicated otherwise, all exposed non-current carrying metallic parts of electrical equipment, metallic raceway systems, grounding conductors in nonmetallic raceways, and neutral conductors of wiring systems shall be grounded.
- C. The ground connection shall be made at the main service equipment and shall be extended to the ground grid surrounding the structure. The ground grid shall also be connected to the point of entrance of the metallic water service. Connection to the water pipe shall be made by a suitable ground clamp or lug connection to a plugged tee.

If flanged pipes are encountered, connection shall be made with the lug bolted to the street side of the flanged connection.

D. Where ground fault protection is employed, care shall be taken so that the connection of the ground and neutral does not interfere with the correct operation of the ground fault protection system.

2.03 FITTINGS

A. Grounding connections to equipment shall be bolted. Cable end connections shall be made by hydraulic crimp or exothermically welded. Split bolt type connectors are not acceptable. Fittings shall be UL 467 Listed.

2.04 EQUIPMENT GROUNDING CONDUCTORS

A. An insulated equipment grounding conductor, which shall be separate from the electrical system grounded (neutral) conductor, shall be furnished and installed for all circuits. Insulation shall be of the same type as the ungrounded conductors in the raceway and shall be green in color. Equipment grounding conductors shall be furnished and installed in all conduits. Use of conduits as the NEC required equipment grounding conductor is not acceptable.

2.05 EQUIPMENT GROUNDS

- A. Equipment grounds shall be solid and continuous from a connection at earth to all distribution panelboards. Ground connections at panelboards, outlets, equipment, and apparatus shall be made in an approved and permanent manner.
- B. For all control panels, enclosed circuit breakers and other electrical enclosures, equipment grounds, and bonding jumpers shall be terminated individually on a ground bar or mechanical lugs. No wire nuts will be permitted.

2.06 GROUND BARS

A. Ground bars shall be furnished and installed where indicated on the Drawings and where required in the Specifications. Ground bars shall be tin-plated copper, 1/4-inch thick (minimum) with hole pairs spaced for NEMA 2-hole cable termination lugs. The number of hole pairs shall be as required for the number of cables terminated, plus four (4) spares (minimum). Ground bars shall be provided with insulated mounting hardware.

2.07 EXOTHERMIC WELDS

A. All exothermic welding shall be completed per welding kit manufacturer's instructions. Exothermic welds shall be CadWeld by Erico or ThermoWeld.

3

GROUNDING AND

CADONIDINGS
Exhibit 1D

Page 1296 of 2050

PART 3 - EXECUTION

3.01 INSTALLATION

A. Metal surfaces where grounding connections are to be made shall be clean and dry. Steel surfaces shall be ground or filed to remove all scale, rust, grease, and dirt. Copper and galvanized steel shall be cleaned with emery cloth to remove oxide before making connections.

B. Ground Grid

- 1. A main ground grid shall be provided for each structure and interconnecting structure grids consisting of driven ground rods as shown on the Drawings. Ground rods shall be driven straight down into the earth, or if objects are encountered, at an angle to avoid the obstruction.
- 2. The ground rods shall be interconnected by the use of copper cable sized as shown on the Drawings. The interconnecting cables shall be connected to ground rods by hydraulic crimp or exothermic weld where buried, and removable bolted clamp where shown to be installed in test wells. The grounding cables shall be installed after the excavations for the building have been completed and prior to the pouring of concrete for the footings, mats, etc. Copper "pigtails" shall be connected to the ground grid and shall enter the buildings and structure from the outside, and shall be connected to steel structures, equipment as described in this Section, and as required to provide a complete grounding system. The copper pigtails shall be hydraulically crimped or exothermically welded to the ground grid and connected to building reinforcement steel by hydraulic crimp.
- 3. Grounding conductors shall be continuous between points of connection; splices shall not be permitted.
- 4. Where conductors are exposed and subject to damage from personnel, traffic, etc., conductors shall be installed in metal raceway. The raceway shall be bonded to the grounding system.
- 5. Where subsurface conditions do not permit use of driven ground rods to obtain proper ground resistance, rods shall be installed in a trench or plate electrodes shall be provided, as applicable and necessary to obtain proper values of resistance.
- 6. Buried hydraulic crimp connections, exothermic welds, and ground ring shall not be backfilled until inspected by Engineer.

C. Raceways

1. Conduit which enters equipment such as transformers, instrument and control panels, and similar equipment shall be bonded to the ground bus or ground lug, where provided, and as otherwise required by the NEC.

3.02 TESTING

- A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 01. The following tests are required:
 - 1. Witnessed Shop Tests
 - a. None required.

2. Field Tests

- a. Field testing shall be done in accordance with the requirements specified in the General Conditions, Division 01, and NETA Acceptance Testing Specifications, latest edition.
- b. Fall of potential tests shall be performed on the ground grid per IEEE 81 recommendations by a third party, independent testing firm. A fall of potential plot shall be submitted at the conclusion of testing for Engineer review. Documentation indicating the location of the rod and grounding system as well as the resistance and soil conditions at the time the measurements were made shall be submitted. Testing shall show that the ground grid has 5 ohms resistance or less. Due to soil conditions and/or unforeseen field conditions, ground resistances greater than 5 ohms may be acceptable if specifically approved in writing by the Engineer. Ground resistance measurements shall be made in normally dry weather not less than 48 hours after rainfall and with the ground grid under test isolated from other grounds.
- c. Continuity tests for the grounding electrode conductor shall be performed. Test will be accepted when a resistance of less than 1 ohm is shown for this conductor.

- END OF SECTION -

GROUNDING AND
CANONIDINGS
Exhibit 1D
Page 1298 of 2050

SECTION 16190 SUPPORTING DEVICES

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install structural supports for mounting and installing all conduits, electrical equipment, lighting, alarm systems, instrumentation, and control and communications equipment furnished under this Contract.
- B. Equipment shall be installed strictly in accordance with recommendations of the manufacturer and best practices of the trade resulting in a complete, operable, and safe installation. The Contractor shall obtain written installation manuals from the equipment manufacturer prior to installation.
- C. Support design for all nonstructural electrical components (e.g., conduit and other raceways, freestanding equipment, etc.) shall be provided in accordance with the governing Building Code.
- D. Reference Specification Section 16000 Basic Electrical Requirements.

1.02 CODES AND STANDARDS

- A. Equipment and materials covered under this Section shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. American Society for Testing and Materials (ASTM):
 - a. ASTM A123 Standard Specification for Zinc (Hot Dip Galvanized) Coatings on Iron and Steel Products.
 - b. ASTM A153 Standard Specification for Zinc Coating (Hot Dip) on Iron and Steel Hardware.
 - c. ASTM A240 Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications.
 - d. ASTM A276 Standard Specification for Steel Bars and Shapes.
 - e. ASTM B783 Standard Specification for Materials for Ferrous Powder Metallurgy Structural Parts.
 - 2. National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 Submittals, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - 1. Shop drawings
 - 2. Structural support calculations and designs in accordance with the governing Building Code.
- B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - 1. Product data sheets.
 - 2. Complete assembly, layout, installation, and foundation drawings with clearly marked dimensions.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. The equipment covered by this Specification is intended to be standard equipment of proven performance as manufactured by reputable concerns. Equipment shall be designed, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as shown on the Drawings.

2.02 MATERIALS

- A. Support channel shall be 1-5/8" by 1-5/8" minimum, with 12-gauge material thickness.
- B. Support channel, support channel fittings, and threaded rod shall be furnished with the following material of construction, dependent upon the designation of the area in which they are to be installed. Area designations are indicated on the Drawings.

Area Designation	Material of Construction		
All Outdoor Areas	Type 316 Stainless Steel		
All Hazardous Areas	Type 316 Stainless Steel		

C. Fastening hardware (bolts, nuts, washers, and screws) shall be furnished with the following material of construction, dependent upon the designation of the area in which they are to be installed. Area designations are indicated on the Drawings.

Area Designation	Material of Construction		
All Outdoor Areas	Type 316 Stainless Steel		
All Hazardous Areas	Type 316 Stainless Steel		

PART 3 – EXECUTION

3.01 INSTALLATION

A. Concrete or Masonry Inserts

- 1. The Contractor shall be responsible for the furnishing and installation of all anchor bolts, masonry inserts, and similar devices required for installation of equipment furnished under this Contract.
- 2. If a time delay for the arrival of any special inserts or equipment drawings, etc. occurs, the Contractor may, if permitted by the Engineer, make arrangements for providing approved recesses and openings in the concrete or masonry and, upon subsequent installation, the Contractor shall be responsible for filling in such recesses and openings. Any additional costs that may be incurred by this procedure shall be borne by the Contractor.
- 3. The Contractor shall furnish leveling channels for all floor mounted equipment. The leveling channels shall be provided for embedment in the equipment housekeeping pads. Coordination of the installation of these channels with the concrete pad is essential and required. Pad height shall be as required to maintain concrete coverage of the reinforcement bars while not causing associated equipment to exceed the maximum mounting height requirements of the NEC.

B. Support Fastening and Locations

- Unless otherwise indicated on the Drawings or in the Specifications, guards/handrails shall not be utilized as supports for electrical equipment, devices, or appurtenances. Guards/handrails shall not be cut, drilled, or otherwise modified in order to accommodate electrical supports without written approval from the Engineer.
- 2. Support channel shall be provided wherever required for the support of panels, and miscellaneous equipment.

3

SUPPORTING
CANHY GES
Exhibit 1D
Page 1301 of 2050

- 3. Equipment, devices, and raceways that are installed on the dry side of a water bearing wall shall not be installed directly onto the wall. Support channel shall be used to allow ventilation air to pass behind the equipment, devices, or raceway.
- 4. All supports shall be rigidly bolted together and braced to make a substantial supporting framework. Where possible, control equipment shall be grouped together and mounted on a single framework.
- 5. Aluminum support members shall not be installed in direct contact with concrete. Stainless steel or non-metallic "spacers" shall be used to prevent contact of aluminum with concrete.
- 6. Actual designs for supporting framework should take the nature of a picture frame of support channels and bracket with a plate for mounting the components. The Contractor is responsible for the design of supporting structure; Contractor shall submit design details to the Engineer for acceptance before proceeding with the fabrication.
- 7. Wherever dissimilar metals come into contact, the Contractor shall isolate these metals as required with neoprene washers, nine (9) mil polyethylene tape, or gaskets.
- 8. For the following installations where conduits are provided with a support system suspended from the above or attached to a vertical structure, the Contractor shall submit structural calculations and details of the proposed system of support. Structural calculations shall be signed and sealed by a Professional Engineer (P.E.) licensed in the State or Commonwealth in which the project is located.
 - a. A quantity of twelve (12) or more conduits trade size 1" and smaller are proposed for a conduit support rack.
 - b. A quantity of eight (8) or more conduits trade sizes 1 ½" to 2 1/2" are proposed for a conduit support rack.
 - c. A quantity of four (4) or more conduits trade sizes 3" and larger are proposed for a conduit support rack.
- 9. Single conduits installed exposed along walls shall be secured to the wall with a one-hole conduit clamp and clamp-back. Where multiple conduits are installed exposed together, support channel and conduit clamps shall be used.
- C. Equipment, boxes, and enclosures which are factory-constructed with integral mounting provisions (such as brackets, mounting feet, bolt holes, etc.) shall be installed/supported utilizing those mounting provisions. Equipment, boxes and enclosures shall not be fieldmodified by any means which compromises the UL Listing or NEMA rating of the enclosure/assembly.

- END OF SECTION -

SECTION 16195 ELECTRICAL IDENTIFICATION

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. All electrical equipment shall be properly identified in accordance with these Specifications and the Contract Drawings. All electrical equipment shall be identified in the manner described, or in an equally approved manner.
- B. The types of electrical identification specified in this Section include, but are not limited to, the following:
 - 1. Operational instructions and warnings.
 - 2. Danger signs.
 - 3. Equipment/system identification signs.
 - 4. Nameplates.

102 SIGNS

A. "DANGER HIGH VOLTAGE" signs shall be securely mounted on the entry doors of all electrical rooms.

1.03 LETTERING AND GRAPHICS

A. The Contractor shall coordinate names, abbreviations, and other designations used in the electrical identification work with the corresponding designations shown, specified, or scheduled. Provide numbers, lettering, and wording as indicated or, if not otherwise indicated, as recommended by manufacturers or as required for proper identification and operation/maintenance of the electrical systems and equipment.

1.04 SUBMITTALS

A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 – Submittals, the Contractor shall obtain from the equipment manufacturer and submit shop drawings. Each submittal shall be identified by the applicable Specification Section.

1.05 SHOP DRAWINGS

A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.

- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - Product data sheets.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. The material covered by these Specifications is intended to be standard material of proven performance as manufactured by reputable concerns. Material shall be fabricated, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as specified herein and shown on the Drawings.

2.02 NAMEPLATES

- A. Nameplates shall be engraved, high pressure plastic laminate, black foreground with white lettering.
- B. Nameplates shall be attached to NEMA 4X enclosures utilizing UL-recognized mounting kits designed to maintain the overall UL Type rating of the enclosure. Mounting kit fasteners shall be stainless steel Type AHK10324X as manufactured by Hoffman, or Engineer approved equal.

2.03 HIGH VOLTAGE SIGNS

A. Standard "DANGER" signs shall be of baked enamel finish on 20 gauge steel; of standard red, black, and white graphics; 14 inches by 10 inches size except where 10 inches by 7 inches is the largest size which can be applied where needed, and except where a larger size is needed for adequate identification.

2.04 CONDUIT IDENTIFICATION

A. Conduit identification shall be as specified in Section 16111 – Conduit.

2.05 WIRE AND CABLE IDENTIFICATION

- A. Field installed wire and cable identification shall be as specified in Section 16123 Low Voltage Wire and Cable.
- B. A plastic laminate nameplate shall be provided at each control panel. This nameplate shall be used to clearly convey the conductor identification means used at that piece of equipment (e.g., Phase A=Brown, Phase B=Orange, C=Yellow).

C. Wiring identification for factory installed wiring in equipment enclosures shall be as specified in the respective Section.

2.06 BOX IDENTIFICATION

A. Pull, and junction boxes identification shall be as specified in Section 16130 – Boxes.

PART 3 - EXECUTION

3.01 NAMEPLATES

A. Nameplates shall be attached to the equipment enclosures with two (2) stainless steel sheet metal screws for nameplates up to 2-inches wide. For nameplates over 2-inches wide, four (4) stainless steel sheet metal screws shall be used, one (1) in each corner of the nameplate. The utilization of adhesives is not permitted.

3.02 OPERATIONAL IDENTIFICATION AND WARNINGS

A. Wherever reasonably required to ensure safe and efficient operation and maintenance of the electrical systems and electrically connected mechanical systems and general systems and equipment, including prevention of misuse of electrical facilities by unauthorized personnel, install plastic signs or similar equivalent identification, instruction, or warnings on switches, outlets, and other controls, devices, and covers or electrical enclosures. Where detailed instructions or explanations are needed, provide plasticized tags with clearly written messages adequate for the intended purposes. Signs shall be attached as specified above for nameplates.

3.03 POWER SOURCE IDENTIFICATION

- A. After installation of all field equipment (e.g., valves, motors, fans, unit heaters, instruments, etc.) install nameplates at each power termination for the field equipment. Nameplate data shall include equipment designation (tag number), power source (LCP-SS10, etc.), circuit number, conduit number from schedule and voltage/phase.
- B. Contractor to coordinate with the Engineer and the Owner regarding exact nameplate placement during construction.
- C. Nameplates shall be as specified herein.

- END OF SECTION -

SECTION 16280 SURGE PROTECTIVE DEVICES

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish, install, and place in satisfactory operation the surge protective devices (SPD) as specified herein and indicated on the Drawings.
- B. Reference the following Specification Sections:
 - 1. Section 16123 Low Voltage Wire and Cable
 - 2. Section 16195 Electrical Identification

1.02 CODES AND STANDARDS

- A. All equipment shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL).
- B. The equipment shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. American National Standards Institute (ANSI)/Institute of Electrical & Electronic Engineers (IEEE):
 - a. C62.41.1 IEEE Guide on the Surge Environment in Low-Voltage (1000 V and less) AC Power Circuits.
 - b. C62.41.2 IEEE Recommended Practice on Characterization of Surges in Low -Voltage (1000 V and less) AC Power Circuits.
 - c. C62.45 IEEE Recommended Practice on Surge Testing for Equipment Connected to Low-Voltage (1000 V and less) AC Power Circuits.
 - d. C62.62 IEEE Standard Test Specifications for Surge -Protective Devices (SPDs) for Use on the Load Side of the Service Equipment in Low Voltage (1000 V and less) AC Power Circuits.
 - 2. National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).
 - 3. Underwriters Laboratories (UL):
 - a. UL 1283, latest edition Electromagnetic Interference Filters.

1

b. UL 1449, latest edition – Surge Protective Devices.

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in General Conditions and Section 01300 - Submittals, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - 1. Shop Drawings
 - 2. Operation and Maintenance Manuals
 - 3. Spare Parts List

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for re-submittal.
- C. Drawings submitted by the manufacturer shall be complete and documented to provide the Owner with operations and maintenance capabilities.
- D. Shop drawings for each SPD shall include but not be limited to:
 - Product Data Sheets.
 - 2. Detailed drawings showing weights and dimensions.
 - 3. Wiring diagrams showing field connections.
 - 4. Manufacturer's Warranty Information
- E. The shop drawing information shall be complete and organized in such a way that the Engineer can determine if the requirements of these Specifications are being met. Copies of technical bulletins, technical data sheets from "Soft Cover" catalogs, and similar information which is "highlighted" or somehow identifies the specific equipment items the Contractor intends to provide are to provide are acceptable and shall be submitted.

1.05 OPERATION AND MAINTENANCE MANUALS

A. The Contractor shall submit operation and maintenance manuals in accordance with the procedures and requirements set forth in the General Conditions and Division 01.

1.06 SPARE PARTS

- A. All spare parts as recommended by the equipment manufacturer shall be furnished by the Contractor to the Owner.
- B. The Contractor shall furnish one (1) spare field replacement module of each type and rating provided under this Contract if modules are field replaceable.
- C. Reference Section 16000 Basic Electrical Requirements for spare parts delivery and handling requirements.

1.07 IDENTIFICATION

A. Each SPD shall be identified by the circuit number and equipment name as indicated on the Drawings. A nameplate shall be securely affixed in a conspicuous place on each SPD. Nameplates shall be as specified in Section 16195 - Electrical Identification.

1.08 WARRANTY

- A. All SPDs, associated hardware, and supporting components shall be warranted to be free from defects in materials and workmanship, under normal use and in accordance with the instructions provided, for a period of ten (10) years after acceptance of the equipment by the Owner.
- B. Any component or subassembly contained within the surge protection system that shows evidence of failure or incorrect operation during the warranty period, shall be replaced by the manufacturer at no additional cost to the Owner.

PART 2 - PRODUCTS

2.01 GENERAL

- A. The SPD units shall be UL 1449 Listed. Units that are "manufactured in accordance with" UL 1449 or "component recognized" SPDs are not acceptable and will be rejected.
- B. Type II SPD units shall be UL 1283 Listed. Units that are "manufactured in accordance with" UL 1283 or "component recognized" SPDs are not acceptable and will be rejected.

2.02 PRODUCTS

- A. Type I surge protective devices (SPD) shall be furnished and installed when shown without upstream overcurrent protection on the Drawings. Type II SPDs shall be provided in all other locations. Type II SPDs shall not require the use of a specific upstream overcurrent device. SPDs shall be provided in the location and quantity as shown on the Drawings.
- B. Each SPD shall be rated for the voltage and configuration of the equipment to which it is connected.

- C. Each Type II SPD shall have UL 1283 EMI/RFI filtering with minimum attenuation of -50dB at 100kHz.
- D. The short circuit current rating of each SPD shall match or exceed the rating of the equipment to which it is connected. The Contractor shall reference the Drawings for short circuit current rating of each piece of equipment.
- E. Each SPD system shall provide surge protection in all possible modes. Surge protection shall be as follows:

System Configuration	Modes of Protection	Number of Modes
3-Phase Wye	L-N, L-G, N-G	7
3-Phase Delta	L-L, L-G	6

- F. Each SPD shall have a Maximum Continuous Operating Voltage (MCOV) of at least 115% of the nominal voltage of the equipment to which it is connected.
- G. The Nominal Discharge Current (In) of each SPD shall be 20kA. Peak surge current ratings shall not be used as a basis for applying the SPD to the system.
- H. The Voltage Protection Rating (VPR) of each SPD shall not exceed the following:

System Voltage	L-N	L-G	L-L	N-G
480Y/277	1200V	1200V	1800V	1200V
480 DELTA	N/A	1800V	1800V	N/A

- I. The surge current rating for each SPD shall be as indicated on the Drawings. Surge current ratings are indicated on single line diagrams. Surge current rating indicated is on a per phase basis.
- J. Each SPD shall be provided with the following accessories:
 - 1. Each individual module shall feature an LED indicating the individual module has all surge protection devices active. If any single component is taken off-line, the LED shall turn off and another LED shall illuminate, providing individual module as well as total system status indication.
 - 2. Surge counter and audible alarm with reset/silence switch.
 - 3. One set of Form C (SPDT) dry contacts rated for at least 5A at 120VAC.
- K. SPDs which are indicated to be installed integral to (within) the equipment that they protect shall be manufactured by the same manufacturer as the equipment.

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

PART 3 - EXECUTION

3.01 INSTALLATION

- A. The SPD units shall be furnished and installed as shown on the Drawings and in accordance with the manufacturer's installation instructions.
- B. SPDs which are indicated to be integral with the equipment that they protect shall be installed within the enclosure for that equipment.
- C. Prior to energizing, the following shall be performed for each SPD:
 - 1. Verify that the SPD unit voltage and configuration is suitable for the system to which it is connected.
 - 2. Verify that any neutral-to-ground bonding jumpers are installed as required.

3.02 TESTING

- A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 01. The following tests are required:
 - 1. Shop Tests
 - a. Standard factory tests shall be performed on the equipment under this Section. All tests shall be in accordance with the latest version of NEMA, ANSI, and UL standards.
 - All surge protective devices, subassemblies, and components shall be 100% tested and certified by the manufacturer to meet their published performance parameters.

2. Field Tests

a. None required.

- END OF SECTION -

SECTION 16440 DISCONNECT SWITCHES

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish, install, test, and place in satisfactory operation separately mounted, individual disconnect switches as specified herein and indicated on the Drawings.
- B. Reference the following Specification Sections:
 - 1. Section 16000 Basic Electrical Requirements
 - 2. Section 16195 Electrical Identification

1.02 CODES AND STANDARDS

- A. All equipment shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL).
- B. Disconnect switches shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. National Electrical Manufacturers Association (NEMA):
 - a. NEMA 250 Enclosures for Electrical Equipment.
 - b. NEMA KS 1 Heavy Duty Enclosed and Dead-Front Switches (600 Volts Maximum).
 - 2. National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).
 - 3. Underwriters Laboratories (UL):
 - a. UL 98 Enclosed and Dead-Front Switches.

1.03 SUBMITTALS

A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 – Submittals, the Contractor shall obtain from the equipment manufacturer and submit the following:

1

- 1. Shop Drawings
- 2. Spare Parts List

3. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - 1. Product data sheets.
 - 2. Complete layout and installation drawings with clearly marked dimensions for each type/size/rating of disconnect switch.
 - 3. Assembled weight of each unit.
- D. The shop drawing information shall be complete and organized in such a way that the Engineer can determine if the requirements of these Specifications are being met. Copies of technical bulletins, technical data sheets from "soft-cover" catalogs, and similar information which is "highlighted" or somehow identifies the specific equipment items that the Contractor intends to provide are acceptable and shall be submitted.

1.05 SPARE PARTS

- A. The equipment shall be furnished with all spare parts as recommended by the equipment manufacturer.
- B. One (1) complete set of spare fuses for each ampere rating installed shall be furnished and delivered to the Owner at the time of final inspection.
- C. Reference Section 16000 Basic Electrical Requirements for spare parts delivery and handling requirements.

1.06 IDENTIFICATION

A. Each equipment item shall be identified with a nameplate. The nameplate shall be engraved indicating the equipment name with which it is associated. Equipment identification shall be in accordance with Section 16195 – Electrical Identification.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. The equipment covered by this Specification is intended to be standard equipment of proven performance as manufactured by reputable concerns. Equipment shall be designed, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as shown on the Drawings.
- B. Switches shall be manufactured by the Square D Company, Eaton, the GE by ABB, Rockwell Automation (Allen-Bradley), or Siemens Energy and Automation, Inc.

2.02 DISCONNECT SWITCHES

- A. Disconnect switches shall be heavy-duty type and/or as specified in these Specifications. Switches shall be furnished and installed as shown on the Drawings and as required by the NEC. Handles shall be lockable.
- B. Disconnect switches for non-hazardous areas shall be UL 98 Listed.
- C. Disconnect switches shall be service entrance rated where indicated on the Drawings.
- D. Switches shall meet NEMA Standard KS 1 type HD requirements, be, single-throw, be externally operated, and be fused or non-fused as indicated on the Drawings. Switches shall have the number of the poles, voltage, and ampere ratings as shown on the Drawings.

E. Enclosure Types and Materials

1. In non-hazardous locations, disconnect switches shall be furnished with the following enclosure type and material of construction, dependent upon the designation of the area in which they are to be installed. Area designations are indicated on the Drawings.

Area Designation	Enclosure Type and Material
All Outdoor Areas	NEMA 4X, Type 316 Stainless Steel

- F. Disconnect switches shall be quick-make, quick-break and with an interlocked cover which cannot be opened when switch is in the "ON" position and capable of being locked in the "OPEN" position.
- G. A complete set of fuses for all switches shall be furnished and installed as required. Time-current characteristic curves of fuses serving motors or connected in series with circuit breakers shall be coordinated for proper operation. Fuses shall have voltage rating not less than the circuit voltage.

3

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

- H. Disconnect switches shall be furnished with a factory installed internal barrier kit that helps prevent accidental contact with live parts and provides "finger-safe" protection when the door of the enclosed switch is open.
- I. Disconnect switches shall be furnished with a manufacturer-supplied ground lug kit for termination of equipment grounding conductors. Where a grounded (neutral) conductor is shown on the Drawings in the conduits connected to the disconnect switch, a manufacturer-supplied neutral bar shall be furnished for termination of the grounded conductors. Third party ground lug and neutral lug kits not supplied by the disconnect switch manufacturer are not acceptable.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. Disconnect switches shall be mounted, nominally, at 4ft 6in above finished floor or finished grade to the centerline of the operating handle mechanism (and not to exceed 6ft 7in to the center of the operating handle grip when in its highest position), at the equipment height where appropriate and permitted by the NEC, or where shown otherwise.
- B. Disconnect switches shall be provided in the enclosure type and material of construction required for the area in which it is installed. Reference the requirements in Part 2 herein, and the area designations indicated on the Drawings.

3.02 TESTING

- A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 01. The following tests are required:
 - 1. Field Tests
 - Field testing shall be done in accordance with the requirements specified in the General Conditions, Division 01, and NETA Acceptance Testing Specifications, latest edition.

END OF SECTION

Page 1314 of 2050

SECTION 16461 DRY TYPE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish, install, test, and place in satisfactory operation transformers for power and lighting distribution systems as specified herein, as indicated on the Drawings, and as required to complete the electrical installations.
- B. Reference the following Specification Sections:
 - 1. Section 16000 Basic Electrical Requirements
 - 2. Section 16195 Electrical Identification
- C. All equipment specified in this Section shall be furnished by the transformer manufacturer who shall be responsible for the suitability and compatibility of all included equipment.

1.02 CODES AND STANDARDS

- A. All equipment shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL).
- B. Transformers shall be designed, manufactured, and/or Listed to the following standards as applicable:
 - 1. American National Standards Institute (ANSI)/Institute of Electrical and Electronic Engineers (IEEE):
 - a. ANSI/IEEE C57.12.01 Standard for General Requirements for Dry -Type Distribution and Power Transformers.
 - 2. National Electrical Manufacturers Association (NEMA):
 - a. NEMA ST 20 Dry Type Transformers for General Applications.
 - National Fire Protection Association (NFPA):
 - a. NFPA 70 National Electrical Code (NEC).
 - 4. Underwriters Laboratories (UL):
 - a. UL 1561 Dry-Type General Purpose and Power Transformers.
 - 5. U.S. Department of Energy 2016 Efficiency Standards

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Division 1, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - 1. Shop Drawings.
 - 2. Operation and Maintenance Manuals.
 - 3. Spare Parts List.
 - 4. Reports of Certified Shop Field Tests.
- B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein, and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Shop drawings shall include but not be limited to:
 - 1. Product data sheets.
 - 2. Drawings showing clearly marked dimensions and weight for each transformer.
 - 3. Sample equipment nameplate diagram.
- D. The submittal information shall reflect the specific equipment identification number as indicated on the Drawings (e.g., CPT-SS10).
- E. The shop drawing information shall be complete and organized in such a way that the Engineer can determine if the requirements of these Specifications are being met. Copies of technical bulletins, technical data sheets from "soft-cover" catalogs, and similar information which is "highlighted" or somehow identifies the specific equipment items that the Contractor intends to provide are acceptable and shall be submitted.

1.05 OPERATION AND MAINTENANCE MANUALS

A. The Contractor shall submit operation and maintenance manuals in accordance with the procedures and requirements set forth in the General Conditions and Division 1.

1.06 SPARE PARTS

- A. All spare parts as recommended by the equipment manufacturer shall be furnished to the Owner by the Contractor.
- B. Reference Section 16000 Basic Electrical Requirements for spare parts delivery and handling requirements.

1.07 IDENTIFICATION

A. Each transformer shall be identified with the equipment item number indicated on the Contract Drawings and the accepted Shop Drawings. A nameplate shall be securely affixed in a conspicuous place on each transformer. Nameplates shall be as specified in Section 16195 – Electrical Identification.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. The equipment covered by this Specification is intended to be standard equipment of proven performance as manufactured by reputable concerns. Equipment shall be designed, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as shown on the Drawings.
- B. Dry type distribution transformers shall be Energy Star compliant and manufactured by the Square D Company, GE by ABB, Eaton, or Siemens Energy and Automation, Inc.

2.02 DRY TYPE TRANSFORMERS

- A. Furnish and install single-phase and three-phase general purpose, dry-type transformers, as specified herein and indicated on the Drawings. The transformers shall be 60 Hz, self-cooled, quiet-design insulated of the two-winding type.
- B. The transformers shall be UL 1561 Listed.
- C. The primary windings shall be rated 480 VAC for use on 3phase systems and connected delta unless indicated otherwise on the Drawings. KVA ratings shall be as shown on the Drawings. Furnish transformers with two 2-1/2% primary taps above, and four 2-1/2% primary taps below rated voltage for transformers 15 KVA and above, and two 2-1/2% primary taps above, and two 2-1/2% primary taps below rated voltage for transformers less than 15 kVA. All taps shall be full capacity rated.
- D. The ratings of the secondary windings shall be as indicated on the Drawings.
- E. Transformers shall be designed for continuous operation at rated KVA, 24 hours a day, 365 days a year, with normal life expectancy as defined in ANSI/IEEE C57.96. This performance shall be obtainable without exceeding 150 degrees Celsius average

temperature rise by resistance or 180 degrees Celsius hot spot temperature rise in a 40 degrees Celsius maximum ambient and 30 degrees Celsius average ambient. The maximum coil hot spot temperature shall not exceed 220 degrees Celsius. All insulating materials shall be flame retardant and shall not support combustion as defined in ASTM Standard Test Method D 635. All insulating materials shall be in accordance with NEMA ST 20 Standard for a 220 degrees Celsius UL component recognized insulation system.

- F. Transformer coils shall be of the continuous wound copper construction and shall be impregnated with non-hygroscopic, thermosetting varnish.
- G. All cores are to be constructed of high grade, non-aging, grain-oriented silicon steel with high magnetic permeability and low hysteresis and eddy current losses. Magnetic flux densities are to be kept well below the saturation point. The core laminations shall be tightly clamped and compressed with structural steel angles. The completed core and coil shall then be bolted to the base by means of vibration-absorbing mounts to minimize sound transmission. There shall be no metal-to-metal contact between the core and coil assembly and the enclosure.
- H. All transformers shall be equipped with a wiring compartment suitable for conduit entry and large enough to allow convenient wiring. The maximum temperature of the enclosure shall not exceed 90 degrees Celsius. Transformers shall be furnished with lugs of the size and quantity required and suitable for termination of the field wiring.
- The core of the transformer shall be visibly grounded to the enclosure by means of a flexible grounding conductor sized in accordance with applicable NEMA, IEEE, and ANSI standards.
- J. Transformers shall have core and coil assemblies mounted on rubber isolation pads to minimize the sound levels. Transformers shall not exceed the sound levels listed in NEMA ST-20.
- K. Transformers shall be furnished with the following enclosure type and material of construction, dependent upon the designation of the area in which they are to be installed. Area designations are indicated on the Drawings.

Area Designation	Enclosure Type and Material
All Outdoor Areas	NEMA 3R, Stainless Steel

L. The enclosure shall be made of heavy gauge steel and shall be degreased, cleaned, primed, and finished with a baked weather-resistant enamel using the manufacturer's standard painting process. Color shall be ANSI 49 or 61 grey.

PART 3 - EXECUTION

3.01 INSTALLATION

- A. The transformers shall be furnished and installed as shown on the Drawings and as recommended by the equipment manufacturer.
- B. Conduit routed to and from the transformer shall be arranged for easy removal of the transformer access covers.
- C. Prior to final completion of the work, all metal surfaces of the equipment shall be cleaned thoroughly, and all scratches and abrasions shall be retouched with the same lacquer as used for shop finishing coats.

3.02 TESTING

A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 1. The following tests are required:

1. Certified Shop Tests

- a. The transformers shall be given routine factory tests in accordance with the requirements of the ANSI and NEMA standards. Temperature rises may be certified from basic design.
- b. As a minimum, the following tests shall be made on all transformers:
 - 1) Ratio tests on the rated voltage connection and on all tap connections.
 - 2) Polarity and phase-relation tests on the rated voltage connection.
 - 3) Applied potential tests.
 - 4) Induced potential tests.
 - 5) No-load and excitation current at rated voltage on the rated voltage connection.

2. Field Tests

- a. Field testing shall be done in accordance with the requirements specified in the General Conditions, Division 1, and NETA Acceptance Testing Specifications, latest edition.
- b. Insulation between windings shall be tested by 1000 VDC Megohmmeter for one (1) minute. Resistance value shall be no less than 100 Megaohms.

- END OF SECTION -

SECTION 16480 LOW-VOLTAGE ELECTRIC MOTORS

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall furnish all labor, materials, tools and equipment necessary for furnishing, installing, connecting, testing and placing into satisfactory operation all low voltage electric motors as shown on the Drawings and specified herein. All motors required for this Contract shall comply with this Section unless otherwise noted.

1.02 CODES AND STANDARDS

- A. Motors and related accessories shall be designed, manufactured, and/or listed to the following standards as applicable:
 - 1. Institute of Electrical and Electronics Engineers (IEEE)
 - a. IEEE 112 Standard Test Procedure for Polyphase Induction Motors and Generators
 - 2. National Electrical Manufacturer's Association (NEMA)
 - a. NEMA MG 1 Motors and Generators
 - 3. Underwriters Laboratories (UL)
 - a. UL 547 Standard for Safety Thermal Protectors for Motors
 - UL 674 Electric Motors and Generators for Use in Hazardous (Classified)
 Locations
 - c. UL 1004-1 Standard for Rotating Electrical Machines
 - d. UL 1004-3 Standard for Thermally Protected Motors
 - e. UL 1004-8 Standard for Inverter Duty Motors

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 Submittals, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - 1. Shop Drawings.
 - 2. Spare Parts List.

B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete or illegible submittals will be returned to the Contractor without review for resubmittal.
- C. Individual shop drawings for electric motors shall be submitted in accordance with the procedures and requirements set forth in the General Conditions and Section 01300 – Submittals, unless submitted as a part of the shop drawings for the driven equipment.
- D. Shop drawings for electric motors shall include motor data sheets, dimensioned drawings, wiring diagrams for devices such as space heaters, temperature devices, and shaft grounding rings. Shop drawings shall identify electric characteristics and design, mechanical construction, manufacturer's name, type and pertinent specifications for the use intended, along with the name of the equipment to be driven. For motors rated 50 horsepower or greater, submittal of motor data for acceptance shall include, as a minimum, the following:
 - 1. Manufacturer's type and frame designation
 - 2. Horsepower rating
 - 3. Time rating (per NEMA Standards)
 - 4. Ambient temperature rating
 - 5. Motor winding insulation system designation
 - 6. RPM at rated load
 - 7. Frequency
 - 8. Number of phases
 - 9. Rated-load amperes
 - 10. Voltage
 - 11. Code letter (starting KVA per horsepower)
 - 12. Design letter for integral horsepower induction motors (per NEMA Standards)
 - 13. Service factor

PROJECT #12082 - VICTORIA PARK STORMWATER IMPROVEMENTS

- 14. Temperature rise at full load and at service factor load
- 15. Efficiency at 1/4, 1/2, 3/4 and full load
- 16. Power factor at 1/4, 1/2, 3/4 and full load
- 17. Motor outline, dimensions and weight
- 18. Motor winding insulation system description
- 19. Horsepower required by connected machine at specified conditions (load curves) shall be supplied for all compressors, propeller and positive displacement pumps.
- 20. The foregoing data shall also be verified after manufacture and shall be included with the information to be furnished in the operation and maintenance manuals specified.
- E. The shop drawing information shall be complete and organized in such a way that the Engineer can determine if the requirements of these Specifications are being met. Copies of technical bulletins, technical data sheets from "soft-cover" catalogs, and similar information which is "highlighted" or somehow identifies the specific equipment items the Contractor intends to provide are acceptable and shall be submitted.

1.05 SPARE PARTS

A. All spare parts as recommended by the equipment manufacturer shall be furnished to the Owner by the Contractor.

PART 2 - PRODUCTS

2.01 MANUFACTURERS

- A. The equipment covered by this Specification is intended to be standard equipment of proven performance as manufactured by reputable concerns. Equipment shall be designed, constructed and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as shown on the Drawings.
- B. Electric motors shall be manufactured by Baldor/Reliance Electric Company; Nidec Motors; Toshiba Industrial and Power Systems, Inc.; Siemens Energy & Automation, Inc.; General Electric Company; or equal.

2.02 MATERIALS AND CONSTRUCTION

A. Motors shall be built in accordance with the latest standards of NEMA, including, but not limited to MG-1 and MG-2, IEEE, ANSI and to the requirements specified herein.

3

B. Type

- Unless otherwise noted, motors specified herein shall be polyphase squirrel cage, NEMA Design B, or single phase capacitor or repulsion start induction motors. Special equipment requiring a motor drive with unusual characteristics shall be equipped with a definite purpose motor to meet the necessary requirements.
- 2. Unless otherwise shown or specified, all motors 1/2 horsepower or larger shall be three-phase, 60 Hertz, NEMA Design B, squirrel cage induction motors designed for operation at 480 volts or greater as specified herein or shown on the Drawings.
- 3. Unless otherwise specified in the individual equipment specification for the driven equipment, or as required by the dynamic characteristics of the load as determined by the manufacturer of the machine to be driven, all polyphase squirrel cage motors shall be designed to withstand the starting voltage shown on the Drawings and shall have torque and locked rotor current characteristics as specified for NEMA Design B motors.
- 4. Where specified, vertical hollowshaft motors shall be designed to carry the motors', pumps', and associated equipment's full thrust. The motors shall be equipped with grease lubricated spherical roller thrust bearings and lower radial guide bearings. Vertical hollowshaft motors shall be fitted with nonreversing ratchet assemblies where required by equipment specifications. Vertical adjustment shall be provided by means of a lockable nut at the top of the shaft.
- 5. Vertical hollowshaft motors shall have adequate thrust bearings to carry all motor loads and any other operating equipment loads. Horizontal motors shall not be installed where subjected to external thrust loads.

C. Rating

- 1. Each motor shall develop ample torque for its required service through its acceleration range and throughout its rated load range. The rating of the motors offered shall in no case be less than the horsepower shown on the Drawings or elsewhere specified. It should be noted that the motor sizes indicated on the Drawings or as otherwise specified herein, are motor sizes required to operate the specific equipment which is specified. Higher rated motor sizes may be determined from the actual equipment submitted, approved, purchased, and installed. Protective devices, motor starters, disconnect switches, and other necessary equipment shall be furnished and installed for the actual motor sizes required at no additional cost.
- 2. Motor ratings shall be based on continuous operation. The maximum temperature rise for open and drip proof type motors shall not exceed 90 degrees C, and for totally enclosed type motors shall not exceed 80 degrees C.

D. Motor Winding Insulation

- Insulation shall be as specified for each particular type or class of motor. The insulation system shall provide a high dielectric strength, long life covering for the windings which may be required to operate in a continually damp, corrosive, and/or chemically contaminated environment. The insulation shall be resistant to attack by moisture, acids, alkalies, abrasives, and mechanical and thermal shock. Leads shall be sealed with a non-wicking, non-hydroscopic insulation material.
- 2. Motor insulation resistance may be checked at any time after delivery to the job site or during the warranty period. Encapsulated motor stators may be subjected to insulation testing while completely submerged in water. Any motor not meeting the requirements specified herein will be rejected and shall be promptly replaced at no cost to the Owner.
- 3. Torque and locked rotor current characteristics for three phase motors shall be NEMA Design B. The locked rotor KVA/HP input at full voltage for 10 horsepower. motors and larger shall not exceed that permitted for Code Letter "J", except for specialized equipment requiring a motor drive with special definite characteristics.
- 4. Unless otherwise specified, non-inverter duty motors shall be furnished with a Class F insulation system. Unless otherwise specified, inverter duty motors shall be furnished with a Class H insulation system. In either case, temperature rise shall be limited to that for Class B insulation. Output torque and speed characteristics of each motor shall be suitable to operate the driven equipment through the full range of acceleration and operating load conditions without exceeding the nameplate current rating, and/or temperature rise.

E. Nameplates

- 1. The motor manufacturer's nameplate shall be engraved, embossed, or stamped on a stainless steel sheet and fastened to the motor frame with No. 4 or larger oval head stainless steel screws or drive pins. Printed or laser-etched nameplates are not acceptable.
- 2. Nameplates shall include as a minimum, Items 1 through 14 as listed in Article 1.04 D in addition to that required by NEMA standards. The nameplate shall be positioned so as to be readily visible for inspection as installed in the facility.

F. Design

- 1. Motors shall be designed to accelerate and drive the connected equipment under all normal operating conditions without exceeding nameplate ratings.
- 2. Motors specified for operation with variable frequency drives shall be inverter duty rated. Motors shall be considered inverter duty rated only if they meet all of the requirements for NEMA MG-1 Part 31.

LOW-VOLTAGE ELECTRIC MOTORS

- 3. Motors shall be designed to output 100 percent of nameplate horsepower under continuous duty service without exceeding the temperature rise specified herein when controlled by the actual drives furnished. Inverter duty motors shall be designed to operate down to 10% of full load speed without the need for a line powered cooling fan.
- 4. Unless otherwise specified, electric motors shall be furnished with service factors in accordance with NEMA MG-1 as follows:

Type of Motor	Service Factor
Non-inverter Duty	1.15
Inverter Duty	1.0

- 5. Design selection with respect to the driven machine shall be such that the requirements do not exceed 85 percent of the motors' maximum rating modified by service factor, ambient temperature, enclosure, altitude and electrical service. The electrical service conditions shall be assumed to be 10 percent undervoltage, 5 percent underfrequency, and 3 percent voltage unbalance. Altitude shall be assumed to be the project site elevation plus 10 percent. Ambient temperature shall be assumed to be 95 degrees F in exterior locations, 104 degrees F (40 degrees C) in interior locations, and 122 degrees F (50 degrees C) within housings or enclosures; except where higher temperatures may be encountered within or on individual items of equipment. The applicable paragraphs of NEMA MG-1 shall be used in making the design selection.
- 6. Motors used with belt drives shall have sliding bases to provide for belt take up.
- 7. Terminal boxes shall be of sufficient size to accommodate the required quantity and size of conduits. Gasketed terminal boxes shall be furnished with all splash-proof and totally enclosed motors. NEMA ratings of the terminal boxes shall be suited for the application. Motors located in hazardous locations shall be furnished with terminal boxes suitable for the specific Class, Division, and Group suitable for the application. Terminal boxes shall be sized to accommodate accessory equipment such as motor differential current transformers, where required.

G. Construction

 Frames, mounting means, and shafts shall meet NEMA Standards for the horsepower, RPM, and enclosure selected. Enclosures shall be selected according to the degree of mechanical protection required and shall not be of aluminum construction. All motors shall have a manufacturer's standard shop machinery finish, consisting of a rust-resisting priming coat of zinc chromate and a finish coat of alkyd machinery enamel. Reference Section 09900 – Painting.

6

- 2. Motors shall have cast iron frames and a heavy gauge steel terminal box, with neoprene gaskets between the frame and the box and between the box and its cover. A grounding lug(s) shall be provided inside the terminal box.
- 3. Motors weighing more than 50 pounds shall be equipped with at least one lifting eye. All lifting hardware shall be corrosion resistant.
- 4. Motors located in hazardous locations shall be totally enclosed and suitable for the specific Class, Division, and Group suitable for the application.
- 5. Motors located in Class I or II, Division 1 hazardous locations shall bear a U.L.-674 label and shall be provided with a breather/drain approved for the hazardous location. The U.L. listed breather/drain shall prevent the entrance of contaminants while allowing moisture to drain out of the motor.
- 6. Unless otherwise specified, motors rated 25 horsepower or greater located outdoors, in unheated structures, in below grade areas, or as otherwise indicated, shall be furnished with embedded motor winding high temperature switches with leads brought out of the motor terminal box.
- 7. Unless otherwise specified, or required, motors rated less than 200 horsepower shall be furnished with bearings of the grease lubricated, antifriction ball type with conveniently located grease fittings and drain plugs. A means of preventing bearings from becoming over-greased shall be provided. Bearings shall have a minimum B-10 life of 20,000 hours.
- 8. Rotors shall be statically and dynamically balanced. Rotor windings shall be one-piece cast aluminum. Where applicable, rotors shall be constructed with integral fins.
- 9. All motors shall be provided with factory-installed one-hole terminations (ring terminals) on the ends of all motor leads. Terminations shall be identified for use with cables that have stranding other than Class B and shall be the irreversible compression type.

H. Power Factor and Efficiency

1. All motors, including vertical hollowshaft motors, in the range of 1-500 horsepower, inclusive, shall be designed specifically for energy efficiency and high power factor. The motor efficiency and power factor shall meet or exceed the values listed in the table below when the motors are tested in accordance with the NEMA preferred test method IEEE 112A, Method B, Dynamometer. Each motor shall meet the minimum guaranteed efficiency value indicated in the table below. All tests shall be performed in accordance with the procedures contained in NEMA Standard MG1-12.58.

7

LOW-VOLTAGE ELECTRIC MOTORS

Table 12-11
FULL-LOAD EFFICIENCIES OF ENERGY EFFICIENT MOTORS
ENCLOSED MOTORS

2 POLE		4 POLE		6 POLE		8 POLE		
HP	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency
1	75.5	72	82.5	80	80	77	74	70
1.5	82.5	80	84	81.5	85.5	82.5	77	74
2	84	81.5	84	81.5	86.5	84	82.5	80
3	85.5	82.5	87.5	85.5	87.5	85.5	84	81.5
5	87.5	85.5	87.5	85.5	87.5	85.5	85.5	82.5
7.5	88.5	86.5	89.5	87.5	89.5	87.5	85.5	82.5
10	89.5	87.5	89.5	87.5	89.5	87.5	88.5	86.5
15	90.2	88.5	91	89.5	90.2	88.5	88.5	86.5
20	90.2	88.5	91	89.5	90.2	88.5	89.5	87.5
25	91	89.5	92.4	91	91.7	90.2	89.5	87.5
30	91	89.5	92.4	91	91.7	90.2	91	89.5
40	91.7	90.2	93	91.7	93	91.7	91	89.5
50	92.4	91	93	91.7	93	91.7	91.7	90.2
60	93	91.7	93.6	92.4	93.6	92.4	91.7	90.2
75	93	91.7	94.1	93	93.6	92.4	93	91.7
100	93.6	92.4	94.5	93.6	94.1	93	93	91.7
125	94.5	93.6	94.5	93.6	94.1	93	93.6	92.4
150	94.5	93.6	95	94.1	95	94.1	93.6	92.4
200	95	94.1	95	94.1	95	94.1	94.1	93
250	95.4	94.5	95	94.1	95	94.1	94.5	93.6
300	95.4	94.5	95.4	94s.5	95	94.1		
350	95.4	94.5	95.4	94.5	95	94.1		
400	95.4	94.5	95.4	94.5				
450	95.4	94.5	95.4	94.5				
500	95.4	94.5	95.8	95				

Table 12-12
FULL-LOAD EFFICIENCIES FOR NEMA PREMIUM™ EFFICIENCY ELECTRIC MOTORS
RATED 600 VOLTS OR LESS (RANDOM WOUND)
OPEN MOTORS

	2 POLE		4 POLE		6 POLE	
HP	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency	Nominal Efficiency	Minimum Efficiency
1	77	74	85.5	82.5	82.5	80
1.5	84	81.5	86.5	84	86.5	81.5
2	85.5	82.5	86.5	84	87.5	81.5
3	85.5	82.5	89.5	84	88.5	86.5
5	86.5	84	89.5	84	89.5	87.5
7.5	88.5	86.5	91	89.5	90.2	88.5
10	89.5	87.5	91.7	90.2	91.7	90.2
15	90.2	88.5	93	91.7	91.7	90.2
20	91	89.5	93	91.7	92.4	91
25	91.7	90.2	93.6	92.4	93	91.7
30	91.7	90.2	94.1	93	93.6	92.4
40	92.4	91	94.1	93	94.1	93
50	93	91.7	94.5	93.6	94.1	93
60	93.6	92.4	95	94.1	94.5	93.6
75	93.6	92.4	95	94.1	94.5	93.6
100	93.6	92.4	95.4	94.5	95	94.1
125	94.1	93	95.4	94.5	95	94.1
150	94.1	93	95.8	95	95.4	94.5
200	95	94.1	95.8	95	95.4	94.5
250	95	94.1	95.8	95	95.4	94.5
300	95.4	94.5	95.8	95	95.4	94.5
350	95.4	94.5	95.8	95	95.4	94.5
400	95.8	95	95.8	95	95.8	95
450	95.8	95	96.2	95.4	96.2	95.4
500	95.8	95	96.2	95.4	96.2	95.4

NOTES:

(Motor data for continuous duty, NEMA Design B, 1.15 service factor, 40 degrees Celsius ambient, Class F insulation, 3 phase, 460 volt, at listed speed rating.

(TEFC efficiencies apply to both horizontal and vertical motors.

2. Motors rated 50 horsepower or greater shall be individually tested at the factory before shipment, with a copy of test results provided for the Engineer, to assure compliance with the efficiency and power factor specifications.

I. Power Factor Correction

- The power factor shall be corrected as necessary to achieve 85% (minimum) with capacitors sized and installed per manufacturer's recommendations. Capacitors shall be installed such that the motor shall not be damaged by overvoltage or excessive transient electrical torque. The capacitor(s) shall be connected as close as possible or directly to the motor terminals. Any power factor corrections shall not decrease the motor efficiency below the stated minimum requirement of this Specification. All power factor corrections shall be noted on the Shop Drawings submitted to the Engineer for approval. POWER FACTOR CORRECTION, TO ACHIEVE 85%, SHALL BE PROVIDED ON ALL MOTORS ABOVE 15 HORSEPOWER EXCEPT FOR THOSE MOTORS CONTROLLED BY VARIABLE FREQUENCY DRIVES (VFD'S).
- 2. When required, power factor correction capacitors shall be connected on the line side of any type of reduced voltage starting motor controller (e.g. RVAT, RVSS, Part-Winding, Wye-Delta, etc.).

PART 3 - EXECUTION

3.01 INSTALLATION

A. Motors shall be installed as shown on the Drawings and in accordance with the manufacturer's installation instructions.

3.02 DELIVERY, STORAGE, AND HANDLING

- A. Motors shall be properly protected from weather hazards. Motors shall not be allowed to be wrapped tightly in plastic while outdoors. Motors delivered to the site which will not be put in service for a time in excess of 30 calendar days, whether in storage or installed, shall have the shafts rotated a minimum of five (5) rotations every 30 days.
- B. Motors provided with space heaters shall have temporary power applied to the heaters no later than 30 calendar days after delivery to the site until permanent power can be applied to the heaters.
- C. Motors that, in the opinion of the Engineer, have not been properly protected shall be inspected by the manufacturer's representative. Any required electrical corrections for testing shall be made at the Contractor's expense prior to acceptance and/or use.
- D. All motors shall operate without any undue noise or vibration and shall show no signs of phase unbalance.

10

3.03 TESTING

A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 1. The following tests are required:

Witnessed Shop Tests

- a. All motors shall be shop tested and inspected in accordance with the equipment manufacturer's standard procedures. The manufacturer's testing and inspection procedures shall demonstrate that the equipment tested conforms to the requirements specified, all other applicable requirements, and shall be approved by the Engineer. At least 10 days' notice shall be given the Engineer prior to tests and inspection dates.
- b. In addition to the efficiency and power factor testing specified herein, each motor shall be tested to determine compliance with the applicable requirements of the IEEE, ANSI and NEMA. Tests shall be as follows:
 - 1) Motors less than 50 HP:
 - a) Each motor shall be subjected to a standard, short commercial test including the following:
 - i. Running current, no load
 - ii. Locked rotor current
 - iii. High potential
 - iv. Winding resistance
 - v. Bearing inspection

2. Field Tests

- Field tests shall be performed in accordance with the requirements specified in the General Conditions, Division 1, and Section 16000 – Basic Electrical Requirements.
- All electric motors furnished for this project one (1) horsepower or larger shall have the information required in the following tabulation completed. See Exhibit "A" on following page.
- c. All field testing shall be witnessed by the Engineer.

(EXHIBIT A)

MOTOR TEST RECORD					
Motor Identification Remarks	Location	Specified Horsepower	Nameplate Horsepower	Nameplate Amperage (FLA)	Measured Amperage Under Normal Operating Conditions

- END OF SECTION -

SECTION 16500 LIGHTING

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall furnish and install all lighting fixtures, labor, and material, in accordance with the preceding Specifications, the requirements of this Section, and as shown on the Drawings.
- B. Reference the following Specification Sections:
 - 1. Section 16000 Basic Electrical Requirements
 - 2. Section 16170 Grounding and Bonding

1.02 CODES AND STANDARDS

- A. All equipment shall be Listed by and shall bear the Label of Underwriter's Laboratories, Incorporated (UL).
- B. The equipment shall be designed, manufactured, and/or Listed to the following standards as applicable.
 - 1. Institute of Electrical and Electronic Engineers (IEEE)
 - a. IEEE C62.41.3 Guide for Surge Voltages in Low-Voltage AC Power Circuits
 - 2. Illuminating Engineering Society (IES)
 - 3. National Fire Protection Association (NFPA)
 - a. NFPA 70 National Electric Code (NEC).
 - 4. Underwriters Laboratories (UL)
 - a. UL 916 Standard for Energy Management Equipment
 - b. UL 1012 Standard for Safety Power Units Other Than Class 2
 - c. UL 1598 Luminaires

1.03 SUBMITTALS

- A. In accordance with the procedures and requirements set forth in the General Conditions and Section 01300 Submittals, the Contractor shall obtain from the equipment manufacturer and submit the following:
 - 1. Shop Drawings

- 2. Operation and Maintenance Manuals
- 3. Spare Parts Lists
- B. Each submittal shall be identified by the applicable Specification Section.

1.04 SHOP DRAWINGS

- A. Each submittal shall be complete in all respects, incorporating all information and data listed herein and all additional information required for evaluation of the proposed equipment's compliance with the Contract Documents.
- B. Partial, incomplete, or illegible submittals will be returned to the Contractor for resubmittal without review.
- C. Shop drawings shall include but not be limited to:
 - 1. Product data sheets.
 - 2. Catalog cuts for each fixture type showing performance and construction details of standard fixtures, and complete working drawings showing all proposed construction details of special or modified standard fixtures.
 - Photometric curves.
 - 4. LED data including efficiency (Efficacy lumens/watt) information.
 - 5. LED Driver information
 - 6. Catalog data including applicable coefficients of utilization tables, isolux chart of illumination on a horizontal plane, beam efficiency, horizontal and vertical beam spread, and beam lumens.
 - 7. Manufacturer's warranty information.
 - 8. System (entire fixture assembly) efficiency data.
 - 9. Pole and foundation calculations.
- D. Shop drawings shall be submitted to the Engineer for review and acceptance for all fixtures before fixtures and poles are manufactured. Substitutions will be permitted only if acceptable to the Engineer.
- E. Manufacturer's model/series and description in the fixture schedule on the Contract Documents establishes a level of quality, style, finish, etc. The use of a model/series describing the various types of fixtures shall be used as a guide only and does not exclude all the required accessories or hardware that may be required for a complete installation.

1.05 OPERATION AND MAINTENANCE MANUALS

A. The Contractor shall submit Operation and Maintenance Manuals in accordance with the procedures and requirements set forth in the General Conditions and Division 1.

1.06 SPARE PARTS

- A. All spare parts as recommended by the equipment manufacturer shall be furnished to the Owner by the Contractor. The following additional spare parts shall be furnished:
 - 1. A minimum of one (1) LED driver for every ten (10) drivers (of the same type) installed.
- B. Reference Section 16000 Basic Electrical Requirements for spare parts delivery and handling requirements.

1.07 LIGHTING CONTROLS

A. The lighting systems shall be controlled as specified herein.

1.08 WARRANTY

- A. The manufacturer's warranty shall in no event be for a period of less than five (5) years from date of delivery of fixtures to the project site and shall include repair labor, travel expense necessary for repairs at the jobsite, shipping costs, expendables used during the course of repair, or complete replacement of the failed lighting unit.
- B. Warranty shall be provided for the entire fixture and shall include all parts and accessories. Submittals received without written warranties as specified shall be rejected in their entirety.

PART 2 – PRODUCTS

2.01 MANUFACTURERS

- A. The equipment covered by this Specification is intended to be standard equipment of proven performance as manufactured by reputable concerns. Equipment shall be designed, constructed, and installed in accordance with the best practices of the trade, and shall operate satisfactorily when installed as shown on the Drawings.
- B. The fixture schedule indicates the basis-of-design manufacturer(s) for each fixture type. The Contractor shall submit photometric calculations for each space and/or area where the Contractor wishes to use an equivalent fixture in accordance with Section 16000 Basic Electrical Requirements. Fixtures will be approved or denied as equivalent on a per-fixture and/or per-space/area basis.

2.02 FIXTURES

- A. All lighting fixtures shall be furnished complete with all fittings and hardware necessary for a complete installation. Lighting fixtures shall have all accessories, characteristics, and functionality as specified.
- B. Fixture leads shall be as required by NEC. Fixtures shall be grounded by the equipment grounding conductor in the conduit.
- C. All glassware shall be high quality, homogeneous in texture, uniform in quality, free from defects, of uniform thickness throughout, and properly annealed. Edges shall be well rounded and free from chips or rough edges.
- D. Fixtures specified to be damp or wet locations rated shall be UL 1598 Listed.
- E. Fixtures shall be as specified in the schedule below

Fixture	Fixture	Description	Basis of Design
Type	Wattage		Mfr. and Model
LL1	49W (max)	Pole-mounted, 120-277VAC, full-cutoff LED light fixture, color temperature of 4000K, IESNA roadway Type 3 distribution, black die cast aluminum housing, 6900 lumen minimum, integral photocell, house-side shield, wet location Listed. Furnish and install fixture on Pole Type A, reference Pole Schedule.	AEL Autobahn ATB0 Series, or Engineer approved equal.

2.03 LED DRIVERS

- A. Drivers shall have a voltage range of 347-480V or 120-277 (as required) +/- 10% at a frequency 60Hz.
- B. All drivers shall be designed to a power factor >90% with a total harmonic distortion THD <20% at full load.
- C. Case temperature shall be rated for -40°C through +80°C.
- D. Drivers shall have overheat protection, self-limited short circuit protection and overload protected.
- E. Drivers shall be furnished with a fused primary.
- F. Drivers shall have an output current ripple <30%
- G. Drivers shall be manufactured by Philips, Advance, Universal or equal.
- H. Drivers shall be UL Listed for damp location, UL1012, ROHS.
- I. Drivers shall meet FCC 47 Sub Part 15.
- J. All drivers shall be provided with ANSI/IEEE C62.41 Category C (10kV/5kA) surge protection.

2.04 LEDS

- A. Luminaires provided with LED technology shall utilize high brightness LEDs with a group binning code of P and/or Q.
- B. Color Temperature: as specified in fixture schedule.
- C. Junction point shall be designed and manufactured to allow adequate heat dissipation.
- D. LEDs shall be rated for 50,000 hours of life, minimum (based on IESNA L70).

2.05 POLES AND FOUNDATIONS

- A. Poles shall be designed to withstand calculated wind force based on wind velocity in accordance with the provisions of the Building Code for the State or Commonwealth in which the project is located.
- B. Pole mounted fixtures shall be mounted on poles as designated in the fixture schedule or as indicated on the Drawings. Poles shall have adequate handholes. All anchor bolts and nuts shall be hot-dipped galvanized steel.
- C. The Contractor shall furnish and install a concrete foundation for freestanding pole mounted fixtures as indicated on the Drawings and as required (e.g., site/roadway lighting).
 - Foundation shall be designed and approved by a Professional Structural Engineer (PE) currently licensed in the State or Commonwealth in which the project is located. The wind design shall be in accordance with ASCE 7 and the Building Code for the State or Commonwealth in which the project is located. Submit signed and sealed calculations for review.
- D. Poles shall be as specified in the pole schedule below and shall be furnished with fixture types where specified in the fixture schedule:

Pole Type	Description	Mfr. and Model
А	Square, black, base-mounted, straight, 12 ft, painted aluminum pole. Pole foundation shall project 36 inches above finished grade.	As selected by fixture manufacturer

PART 3 - EXECUTION

3.01 INSTALLATION

A. The Contractor shall furnish and install the lighting fixtures to allow "convenient" access for maintenance. The Contractor shall install fixtures at mounting heights indicated on the Drawings or as instructed by the Engineer. Where fixtures are shown in locations on the Drawings where maintenance would be difficult, the Contractor shall notify the Engineer for direction.

- B. The Contractor shall provide and install all inserts, conduit, structural supports as required, mounting, poles, wiring, and any other items required for a complete system. Contractor shall properly adjust and test, to the satisfaction of the Engineer, the entire lighting system. The Contractor shall provide pigtails and flexible conduit connected to an outlet box where necessary or required resulting in a neat and complete installation.
- C. The Contractor shall protect all fixtures at all times from damage, dirt, dust, and the like. Upon completion of work, and after the area is broom clean, all fixtures shall be made clean and free of dust and all other foreign matter both on visible surfaces, and on surfaces that affect the lighting performance of the fixture including diffusers, lenses, louvers, reflectors, etc.
- D. All wiring/cables associated with lighting equipment shall be installed in conduits or other raceways as specified. Installing wiring/cables exposed is not acceptable, unless specifically shown otherwise on the Drawings.
- E. All lighting fixtures, when installed, shall be set true and be free of light leaks, warps, dents, and other irregularities.
- F. The Contractor shall support each fixture securely.
- G. All fixtures that require physical adjustment shall be so adjusted in accordance with the directions of the Engineer. The Contractor shall also adjust angular direction of fixtures as directed.
- H. All optical control surfaces such as lenses and reflectors shall be safely and securely attached to fixtures and shall be easily and quickly removed and replaced for cleaning without the use of special tools.

3.02 TESTING

- A. All tests shall be performed in accordance with the requirements of the General Conditions and Division 1. The following tests are required:
 - Certified Shop Tests
 - a. The lighting fixtures shall be given routine factory tests in accordance with the requirement of ANSI, NEMA and Underwriters Laboratories standards.

2. Field Tests

 Field testing shall be done in accordance with the requirements specified in the General Conditions, Division 1, and NETA Acceptance Testing Specifications, latest edition.

- END OF SECTION -

SECTION 17000 CONTROL AND INFORMATION SYSTEM SCOPE AND GENERAL REQUIREMENTS

PART 1 - GENERAL

1.01 SCOPE

- A. The Contractor shall provide, through the services of an instrumentation and control system subcontractor, all components, system installation services, as well as all required and specified ancillary services in connection with the Instrumentation, Control and Information System. The System includes all materials, labor, tools, fees, charges and documentation required to furnish, install, test and place in operation a complete and operable instrumentation, control and information system as shown and/or specified. The system shall include all measuring elements, signal converters, transmitters, local control panels, digital hardware, wireless communication systems, signal and data transmission systems, interconnecting wiring and such accessories as shown, specified, and/or required to provide the functions indicated.
- B. Victoria Park Stormwater Pump Station (SS-10) is a duty/standby two-pump stormwater pump station for the City of Fort Lauderdale. The City will supply all PLC application code, Operator Interface Unit (OIU) and SCADA graphics, acceptance testing, and long-term operations. The Contractor's responsibility ends once every hardwired point has been loop-checked back to LCP-SS10.
- C. The scope of the work to be performed under this Division includes but is not limited to the following:
 - 1. The Contractor shall retain overall responsibility for delivering a complete, operable instrumentation and control (I&C) system in accordance with these Specifications and the Contract Drawings.
 - The Contractor shall furnish and install process instrumentation and associated taps and supports as scheduled or shown on the Drawings, unless otherwise noted or supplied by equipment vendors.
 - The Contractor shall furnish and install pump station Local Control Panel (LCP-SS10) and control system hardware as shown on the Drawings and as specified in Division 17:
 - a. Programmable Logic Controllers (PLCs) and appurtenances.
 - b. Operator Interface Units (OIUs).
 - c. Cellular routers, ethernet switches, cables and appurtenances.
 - 4. The Contractor shall furnish, install and terminate all instrumentation and control system communication cables, including but not limited to Ethernet cables (CAT6).
 - 5. The Contractor shall furnish and install surge protection devices for all digital equipment, local control panels, and instrumentation provided under this Division,

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

including connections to grounding system(s) provided under Division 16. Coordinate grounding requirements with the electrical subcontractor for all digital equipment, local control panels, cellular radio systems and instrumentation provided under this Division. Terminate grounding system cables at all equipment provided under this Division.

- 6. The Contractor shall provide system testing, calibration and training services as specified herein and as required to make all systems fully operational.
- 7. The Contractor shall provide final termination and testing of all instrumentation and control system signal wiring and power supply wiring at equipment furnished under Division 17.
- D. It is the intent of the Contract Documents to construct a complete and working installation. Items of equipment or materials that may reasonably be assumed as necessary to accomplish this end shall be supplied whether or not they are specifically stated herein.

1.02 RELATED ITEMS

- A. Field mounted switches, limit switches, gauges, valve and gate operator position transmitters, sump pump controls and other instrumentation and controls furnished with mechanical or electrical equipment not listed in the instrument schedule shall be furnished, installed, tested and calibrated as specified under other Divisions.
- B. Additional and related work performed under Division 16 includes the following:
 - 1. Instrument A.C. power source and disconnect switch for process instrumentation, A.C. grounding systems, and A.C. power supplies for all equipment, control panels and accessories furnished under Division 17.
 - 2. Conduit and raceways for all instrumentation and control system signal wiring, grounding systems, special cables and communication network cables.
 - 3. Instrumentation and control system signal wiring.
 - 4. Install control system communication network cables.
 - Furnish and install grounding systems for all digital equipment, local control panels, and cellular radio systems, and instrumentation provided under Division 17. Grounding systems shall be complete to the equipment provided under Division 17, ready for termination by the instrumentation subcontractor.
 - 6. Termination of all instrumentation and control system signal wiring at all equipment furnished under other divisions of the Specifications.
 - 7. Final wiring and termination to A.C. grounding systems and to A.C. power sources (e.g. panelboards, motor control centers, and other sources of electrical power).

1.03 GENERAL INFORMATION AND DESCRIPTION

A. Where manufacturers are named for a particular item of equipment, it is intended as a guide to acceptable quality and performance and does not exempt such equipment from

the requirements of these Specifications or Drawings.

- B. In order to centralize responsibility, it is required that all equipment (including field instrumentation and control system hardware) offered under this Division shall be furnished and installed by the instrumentation subcontractor, or under the supervision of the instrumentation subcontractor, who shall assume complete responsibility for proper operation of the instrumentation and control system equipment, including that of coordinating all signals, and furnishing all appurtenant equipment.
- C. The Contractor shall retain total responsibility for the proper detailed design, fabrication, inspection, test, delivery, assembly, installation, activation, checkout, adjustment and operation of the entire instrumentation as well as equipment furnished under other Divisions of the Specifications. The Contractor shall be responsible for the delivery of all detailed drawings, manuals and other documentation required for the complete coordination, installation, activation and operation of mechanical equipment, equipment control panels, local control panels, field instrumentation, and related equipment and/or systems and shall provide for the services of a qualified installation engineer to supervise all activities required to place the completed facility in stable operation under full digital control.
- D. Control system inputs and outputs are listed in the Input/Output Schedule, Section 17920. This information, together with the functional control descriptions, process and instrumentation diagrams, and electrical control schematics, describes the real-time monitoring and control functions to be performed. All PLC, OIT and SCADA application software will be developed and furnished by the City of Fort Lauderdale. The Contractor shall supply the required hardware and coordinate with the City to ensure full compatibility.
- E. The mechanical, process, and electrical drawings indicate the approximate locations of field instruments, control panels, systems and equipment as well as field-mounted equipment provided by others. The instrumentation subcontractor shall examine the mechanical, process and electrical drawings to determine actual size and locations of process connections and wiring requirements for instrumentation and controls furnished under this Contract. The instrumentation subcontractor shall inspect all equipment, panels, instrumentation, and appurtenances either existing or furnished under other Divisions of the Specifications to determine all requirements to interface same with the control and information system. The Contractor shall coordinate the completion of any required modifications with the associated supplier of the item furnished.
- F. The instrumentation subcontractor shall review and approve the size and routing of all instrumentation and control cable and conduit systems furnished by the electrical subcontractor for suitability for use with the associated cable system.
- G. The Contractor shall coordinate the efforts of each supplier to aid in interfacing all systems. This effort shall include, but shall not be limited to, the distribution of approved shop drawings to the electrical subcontractor and to the instrumentation subcontractor furnishing the equipment under this Division.
- H. The Contractor shall be responsible for providing a signal transmission system free from electrical interference that would be detrimental to the proper functioning of the instrumentation and control system equipment.

- I. The City shall have the right of access to the subcontractor's facility and the facilities of his equipment suppliers to inspect materials and parts; witness inspections, tests and work in progress; and examine applicable design documents, records and certifications during any stage of design, fabrication and tests. The instrumentation subcontractor and his equipment suppliers shall furnish office space, supplies and services required for these surveillance activities.
- J. The terms "Instrumentation", "Instrumentation and Control System", and "Instrumentation, Control and Information System" shall hereinafter be defined as all equipment, labor, services and documents necessary to meet the intent of the Specifications.

1.04 INSTRUMENTATION AND CONTROL SYSTEM SUBCONTRACTORS

- A. Instrumentation and control system subcontractors shall be regularly engaged in the detailed design, fabrication, installation, and startup of instrumentation, controls and telemetry for stormwater or wastewater collection and conveyance systems.
- B. Instrumentation and control system subcontractors shall have a minimum of five years of such experience and shall have completed a minimum of three projects of similar type and size as that specified herein. As used herein, the term "completed" shall mean that a project has been brought to final completion and final payment has been made.
- C. The instrumentation and control system subcontractor shall have successfully completed at least one (1) or more projects that required the following:
 - 1. Cellular radio/router configuration.
- D. Acceptable instrumentation and control system subcontractors:

1. CC Controls

5760 Corporate Way West Palm Beach, FL 33407 561.293.3975

2. SJE (Revere Control Systems)

3810 Drane Field Road, Suite 7 Lakeland, FL 33811 205.824.0004

3. Champion Controls

811 NW 57TH PL, Fort Lauderdale, FL 33309 954.318.3090

1.05 DEFINITIONS

A. <u>Solid State</u>: Wherever the term solid state is used to describe circuitry or components in the Specifications, it is intended that the circuitry or components shall be of the type that convey electrons by means of solid materials such as crystals or that work on magnetic principles such as ferrite cores. Vacuum tubes, gas tubes, slide wires, mechanical relays, stepping motors or other devices will not be considered as satisfying the requirements for solid state components of circuitry.

- B. <u>Bit or Data Bit</u>: Whenever the terms bit or data bit are used in the Specification, it is intended that one bit shall be equivalent to one binary digit of information. In specifying data transmission rate, the bit rate or data bit rate shall be the number of binary digits transmitted per second and shall not necessarily be equal to either the maximum pulse rate or average pulse rate.
- C. <u>Integrated Circuit</u>: Integrated circuit shall mean the physical realization of a number of circuit elements inseparably associated on or within a continuous body to perform the function of a circuit.
- D. <u>Mean Time Between Failures (MTBF)</u>: The MTBF shall be calculated by taking the number of system operating hours logged during an arbitrary period of not less than six months and dividing by the number of failures experienced during this period plus one.
- E. <u>Mean Time to Repair (MTTR)</u>: The MTTR shall be calculated by taking the total system down time for repair over an arbitrary period of not less than six months coinciding with that used for calculation of MTBF and dividing by the number of failures causing down time during the period.
- F. <u>Availability</u>: The availability of a non-redundant device or system shall be related to its MTBF and MTTR by the following formula:

A = 100 x (MTBF/(MTBF + MTTR)) Percent

The availability of a device or system provided with an automatically switched backup device or system shall be determined by the following formula:

$$A = A2 + 1 - ((1-A1) \times (1-A1))$$

where:

A1 A2 = availability of non-redundant device or system

= availability of device or system provided with an automatically switched backup device or system

G. Abbreviations: Specification abbreviations include the following:

A - Availability

ADC - Analog to Digital Converter

Al - Analog Input AO - Analog Output

AVAIL - Available

BCD - Binary Coded Decimal

CSMA/CD - Carrier Sense Multiple Access/Collision Detect CPU

Central Processing Unit

CRC - Cyclic Redundancy Check

PROJECT #12082 – VICTORIA PARK STORMWATER IMPROVEMENTS

CRT - Cathode Ray Tube
CS - Control Strategy

DAC - Digital to Analog Converter

DBMS - Data Base Management System

DI - Discrete Input

DMA - Direct Memory Access

DO - Discrete Output

DPDT - Double Pole, Double ThrowDVE - Digital to Video Electronics

EPROM - Erasable, Programmable Read Only Memory

FDM - Frequency Division Multiplexing

FSK - Frequency Shift Keyed

HMI - Human Machine Interface (Software)

I/O - Input/Output

LAN - Local Area Network

LDFW - Lead-Follow

MCC - Motor Control Center

MTBF - Mean Time Between Failures

MTTR - Mean Time To Repair

OS - Operating System

PAC - Programmable Automation Controller

PCB - Printed Circuit Board

PID - Proportional Integral and Derivative Control

PLC - Programmable Logic Controller

PROM - Programmable Read Only Memory

RAM - Random Access Memory

RDY - Ready

RMSS - Root Mean Square Summation

RNG - Running

ROM - Read Only Memory

RTU - Remote Telemetry Unit

SPDT - Single Pole, Double Throw

ST/SP - Start/Stop

TDM - Time Division Multiplexing
UPS - Uninterruptible Power Supply

H. To minimize the number of characters in words used in textual descriptions on CRT displays, printouts and nameplates, abbreviations may be used subject to the Engineer's approval. If a specified abbreviation does not exist for a particular word, an abbreviation may be generated using the principles of masking and or vowel deletion. Masking involves retaining the first and last letters in a word and deleting one or more characters (usually vowels) from the interior of the word.

1.06 ENVIRONMENTAL CONDITIONS

- A. Instrumentation equipment and enclosures shall be suitable for ambient conditions specified. All system elements shall operate properly in the presence of telephone lines, power lines, and electrical equipment.
- B. Inside control rooms and climate-controlled electrical rooms, the temperature will normally be 20 to 25 degrees C; relative humidity 40 to 80 percent without condensation and the air will be essentially free of corrosive contaminants and moisture. Appropriate air filtering shall be provided to meet environmental conditions (i.e., for dust).
- C. Other indoor areas may not be air conditioned/heated; temperatures may range between 0 and 40 degrees C with relative humidity between 40 and 95 percent.
- D. Field equipment including instrumentation and panels may be subjected to wind, rain, lightning, and corrosives in the environment, with ambient temperatures from -20 to 40 degrees C and relative humidity from 10 to 100 percent. All supports, brackets, interconnecting hardware, and fasteners shall be aluminum, type 316 stainless steel, or metal alloy as otherwise suitable for chemical resistance within chemical feed/storage areas shown on the installation detail drawings.

PART 2 - PRODUCTS

2.01 NAMEPLATES

- A. All items of equipment listed in the instrument schedule, control panels, and all items of digital hardware shall be identified with nameplates. Each nameplate shall be located so that it is readable from the normal observation position and is clearly associated with the device or devices it identifies. Nameplates shall be positioned so that removal of the device for maintenance and repair shall not disturb the nameplate. Nameplates shall include the equipment identification number and description. Abbreviations of the description shall be subject to the Engineer's approval.
- B. Nameplates shall be made of 1/16-inch thick machine engraved laminated phenolic plastic having white numbers and letters not less than 3/16-inch high on a black background.
- C. Nameplates shall be attached to metal equipment by stainless steel screws and to other surfaces by an epoxy-based adhesive that is resistant to oil and moisture. In cases where the label cannot be attached by the above methods, it shall be drilled and attached to the associated device by means of stainless steel wire.

7

PART 3 - EXECUTION

3.01 SCHEDULE OF PAYMENT

- A. Payment to the Contractor for Control and Information System materials, equipment, and labor shall be in accordance with the General and Supplementary Conditions. The schedule of values submitted as required by the General and Supplementary Conditions shall reflect a breakdown of the work required for completion of the Control and Information System. The breakdown shall include sufficient detail to permit the Engineer to administer payment for the Control and Information System as outlined below.
- B. The following payment schedule defines project milestones that will be used for establishing maximum partial payment amounts for the Control and Information System. Payment for field instruments, field wiring, fiber optic network cable and similar items will be made in addition to the payment for the scopes of services incorporated into the schedule below

Task Completed	Maximum Cumulative % Request for Payment
Mobilization	3%
Approved Submittals	20%
Hardware Purchase (excludes field instruments)	40%
Loop Checkout	70%
Control System Start-up and Test	80%
Pump Station Start-up	90%
Final System Acceptance Test	95%
Final Acceptance	100%

- C. Requests for payment for materials and equipment that are not installed on site, but are required for system construction and the factory acceptance test (e.g., digital hardware), or are properly stored as described in the General and Supplementary Conditions and herein, shall be accompanied by invoices from the original supplier to the instrumentation subcontractor substantiating the cost of the materials or equipment.
- D. Any balance remaining within the schedule of values for field instruments and other materials installed on the site, or for other materials for which payment is made by invoice, will be considered due upon completion of the Final Acceptance test.

3.02 CLEANING

- A. The Contractor shall thoroughly clean all soiled surfaces of installed equipment and materials.
- B. Upon completion of the instrumentation and control work, the Contractor shall remove all surplus materials, rubbish, and debris that has accumulated during the construction work. The entire area shall be left neat, clean, and acceptable to the City.

3.03 FINAL ACCEPTANCE

- A. Final acceptance of the Instrumentation, Control and Information System will be determined complete by the Engineer, and shall be based upon the following:
 - 1. Receipt of acceptable start up completion and availability reports and other documentation as required by the Contract Documents.
 - 2. Completion of the Availability Demonstration.
 - 3. Completion of all specified control system training requirements.
 - 4. Completion of all punch-list items that are significant in the opinion of the Engineer.
- B. Final acceptance of the System shall mark the beginning of the extended warranty period.

- END OF SECTION -

SECTION 17030 CONTROL AND INFORMATION SYSTEM SUBMITTALS

PART 1 – GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall submit for review complete Shop Drawings for all equipment in accordance with the General Conditions and Division 1 of the Specifications. All submittal material shall be complete, legible, and reproducible, and shall apply specifically to this project.
- B. All submittal material shall be tailored to this project by highlighting relevant items or crossing out non-applicable items. Generic submittal without identified options will be returned to the Contractor without review.
- C. The instrumentation subcontractor shall organize each Division 17 shop drawing submittal with a table of contents that lists each major section of the submittal. Each section shall be arranged by the appropriate Division 17 specification section and shall include a list of all instruments, control system hardware, network hardware or software contained in that specific section of the submittal.

Example: For surge suppressors included in the local control panel submittal refer to Section 17560 – Surge Protection Devices. Pushbuttons and switches should be listed under Section 17550 – Panel Instruments and Accessories.

- C. Compliance, Deviations, and Exceptions (CD&E) Letter:
 - 1. Where a named manufacturer and product is specified and a substitution or an "or equal" product is submitted, the submittal shall be accompanied by a "Compliance, Deviations, and Exceptions (CD&E) letter." If the required submittal is submitted without the letter, the submittal will be rejected.
 - 2. The letter shall include all comments, deviations and exceptions taken to the Drawings and Specifications by the Contractor, subcontractor (if applicable), and the equipment Manufacturer/Supplier. This letter shall include a copy of the Specification Section to which the submittal pertains. In the left margin beside each and every paragraph/item, a letter "C", "D", or "E" shall be typed or written in.
 - a. The letter "C" shall be for full compliance with the requirement.
 - b. The letter "D" shall be for a deviation from the requirement.
 - c. The letter "E" shall be for taking exception to a requirement.
 - 3. Any requirements with the letter "D" or "E" beside them shall be provided with a full typewritten explanation of the deviation/exception. Handwritten explanation of the deviations/exceptions shall not be acceptable.

4. The CD&E letter shall also address deviations, and exceptions taken to each Drawing related to this Specification Section

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 01300 Submittals
- B. Section 17000 Control and Information System Scope and General Requirements

1.03 DIGITAL HARDWARE SUBMITTALS

- A. Submit system block diagram(s) showing:
 - 1. All equipment to be provided.
 - 2. All interconnecting cable.
 - 3. Equipment names, manufacturer, and model numbers.
 - 4. Equipment locations.
- B. Submit information for all digital equipment including, but not limited to, the following:
 - 1. Bill of materials with equipment names, manufacturers, complete model numbers and locations.
 - 2. Catalog cuts, including complete part number breakdown information.
 - 3. Complete technical, material and environmental specifications.
 - 4. Assembly drawings.
 - 5. Mounting requirements.
 - 6. Color samples.
 - 7. Nameplates.
 - 8. Environmental requirements during storage and operation.

1.04 CONTROL PANEL SUBMITTALS

- A. Submittals shall be provided for all control panels, and shall include:
 - 1. Exterior panel drawings with front and side views, to scale.
 - 2. Interior layout drawings showing the locations and sizes of all equipment and wiring mounted within the cabinet, to scale.
 - 3. Panel area reserved for cable access and conduit entry.

- 4. Location plans showing each panel in its assigned location.
- B. Submit information for all exterior and interior panel mounted equipment including, but not limited to, the following:
 - 1. Bill of materials with equipment names, manufacturers, complete model numbers and locations.
 - 2. Catalog cuts, including complete part number breakdown information.
 - 3. Complete technical, material and environmental specifications.
 - 4. Assembly drawings.
 - 5. Mounting requirements.
 - 6. Color samples.
 - 7. Nameplates.
 - 8. Environmental requirements during storage and operation.
- C. Submit panel wiring diagrams showing power, signal, and control wiring, including surge protection, relays, courtesy receptacles, lighting, wire size and color coding, etc.

1.05 INSTRUMENT SUBMITTALS

- A. Submit information on all field instruments, including but not limited to the following:
 - 1. Product (item) name and tag number used herein and on the Contract Drawings.
 - 2. Catalog cuts, including complete part number breakdown information.
 - 3. Manufacturer's complete model number.
 - 4. Location of the device.
 - 5. Input output characteristics.
 - 6. Range, size, and graduations.
 - 7. Physical size with dimensions, NEMA enclosure classification and mounting details.
 - 8. Materials of construction of all enclosures, wetted parts and major components.
 - 9. Instrument or control device sizing calculations where applicable.
 - 10. Certified calibration data on all flow metering devices.
 - 11. Environmental requirements during storage and operation.

12. Associated surge protection devices.

1.06 WIRING AND LOOP DIAGRAMS

- A. Submit interconnection wiring and loop diagrams for all panels and signals in the Control and Information System.
- B. Electrical interconnection diagrams shall show all terminations of equipment, including terminations to equipment and controls furnished under other Divisions, complete with equipment and cable designations. Where applicable, interconnection wiring diagrams shall be organized by input/output card. Interconnecting diagrams shall be prepared in a neat and legible manner on 11 X 17-inch reproducible prints.
- C. Loop drawings shall conform to the latest version of ISA Standards and Recommended Practices for Instrumentation and Control. Loop Drawings shall conform to ISA S5.4, Figures 1-3, Minimum Required Items.
- D. Loop drawings shall not be required as a separate document provided that the interconnecting wiring diagrams required in Paragraph B., above, contain all information required by ISA 5.4.

1.07 TOOLS/SPARE PARTS/DIAGNOSTIC SOFTWARE LIST

A. Submit complete list of special tools, spare parts, test equipment and equipment Testing/diagnostic software to be provided with the instrumentation and control system including quantities and cross reference to appropriate specification section(s).

1.08 OPERATION AND MAINTENANCE MANUALS

- A. The Contractor shall deliver equipment operation and maintenance manuals in compliance with Section 01300 Submittals. Operation and maintenance (O&M) manuals shall consist of two basic parts:
 - 1. Manufacturer standard O&M manuals for all equipment and software furnished under this Division.
 - 2. Custom O&M information describing the specific configuration of equipment and software, and the operation and maintenance requirements for this particular project.
- B. The manuals shall contain all illustrations, detailed drawings, wiring diagrams, and instructions necessary for installing, operating, and maintaining the equipment. The illustrated parts shall be numbered for identification. All modifications to manufacturer standard equipment and/or components shall be clearly identified and shown on the drawings and schematics. All information contained therein shall apply specifically to the equipment furnished and shall only include instructions that are applicable. All such illustrations shall be incorporated within the printing of the page to form a durable and permanent reference book.
- C. The manuals shall be prepared specifically for this installation and shall include all required cuts, drawings, equipment lists, descriptions, etc. that are required to instruct operation and maintenance personnel unfamiliar with such equipment. The maintenance instructions shall include troubleshooting data and full preventive maintenance schedules.

The instructions shall be bound in locking 3-D-ring binders with bindings no larger than 3.5 inches. The manuals shall include 15% spare space for the addition of future material. The instructions shall include drawings reduced or folded and shall provide the following as a minimum.

- 1. A comprehensive index.
- 2. A functional description of the entire system, with references to drawings and instructions.
- 3. A complete "as-built" set of all approved shop drawings, which shall reflect all work required to achieve final system acceptance.
- 4. A complete list of the equipment supplied, including serial numbers, ranges, and pertinent data.
- 5. Full specifications on each item.
- 6. Detailed service, maintenance, and operation instructions for each item supplied.
- 7. Special maintenance requirements particular to this system shall be clearly defined, along with special calibration and test procedures.
- 8. Complete parts lists with stock numbers and name, address, and telephone number of the local supplier.
- 9. References to manufacturers' standard literature where applicable.
- 10. Warning notes shall be located throughout the manual where such notes are required to prevent accidents or inadvertent misuse of equipment.
- D. The operating instructions shall clearly describe the step-by-step procedures that must be followed to implement all phases of all operating modes. The instructions shall be in terms understandable and usable by operating personnel and maintenance crews and shall be useful in the training of such personnel.
- E. The maintenance instructions shall describe the detailed preventive and corrective procedures required, including environmental requirements during equipment storage and system operation, to keep the System in good operating condition. All hardware maintenance documentation shall make reference to appropriate diagnostics, where applicable, and all necessary wiring diagrams, component drawings and PCB schematic drawings shall be included.
- F. The hardware maintenance documentation shall include, as a minimum, the following information:
 - 1. Operation Information This information shall include a detailed description of how the equipment operates and a block diagram illustrating each major assembly in the equipment.
 - 2. Preventive-Maintenance Instructions These instructions shall include all applicable visual examinations, hardware testing and diagnostic routines, and the adjustments

necessary for periodic preventive maintenance of the System.

- 3. Corrective-Maintenance Instructions These instructions shall include guides for locating malfunctions down to the card-replacement level. These guides shall include adequate details for quickly and efficiently locating the cause of an equipment malfunction and shall state the probable source(s) of trouble, the symptoms, probable cause, and instructions for remedying the malfunction.
- 4. Parts Information This information shall include the identification of each replaceable or field-repairable component. All parts shall be identified on a list in a drawing; the identification shall be of a level of detail sufficient for procuring any repairable or replaceable part. Cross-references between equipment numbers and manufacturer's part numbers shall be provided.

1.09 FINAL SYSTEM DOCUMENTATION

- A. All documentation shall be delivered to the City prior to final system acceptance in accordance with the Contract Documents. As a minimum, final documentation shall contain all information originally part of the control system submittals.
- B. If any documentation or other technical information submitted is considered proprietary, such information shall be designated. Documentation or technical information which is designated as being proprietary will be used only for the construction, operation, or maintenance of the System and, to the extent permitted by law, will not be published or otherwise disclosed.
- C. Provide a complete set of detailed electrical interconnection diagrams required to define the complete instrumentation and control system. All diagrams shall be 11 X 17-inch original reproducible prints. All diagrams shall be corrected so as to describe final "asbuilt" hardware configurations and to reflect the system configuration and control methodology adopted to achieve final system acceptance.
- D. The City recognizes the fact that not all possible problems related to real-time events, software interlocks, and hardware maintenance and utilization can be discovered during the Acceptance Tests. Therefore, the instrumentation subcontractor through the Contractor shall investigate, diagnose, repair, update, and distribute all pertaining documentation of the deficiencies that become evident during the warranty period. All such documentation shall be submitted in writing to the City within 30 days of identifying and solving the problem.

1.10 SUBMITTAL/DOCUMENTATION FORMAT

- A. All drawing-type submittals and documentation shall be rendered and submitted in the latest version of AutoCAD as well as Adobe PDF format. All AutoCAD drawings shall conform to City CAD standard in effect at the time of contract bidding.
- B. All textual-type submittals and documentation shall be rendered and submitted in the latest version of Microsoft Word or in Searchable Adobe Portable Document Format (.pdf).
- C. All textual-type submittals and documentation shall be submitted at least with a similar format as outlined below:

- 0. Cover Page.
- 1. Table of contents.
- 5. Section No. XX XX XX Name of the section.
 - a. Sections shall group items of the same Specification Section. Example (Section: 17185 Networks, Section: 17120 Programable Logic Controllers, etc.).
 - b. The Section No. XX XX XX page shall be a blank page containing only the information of the section number. The following page shall contain a list of all devices provided under this section, listed in alphabetical order from A to Z.
 - c. Every page after the Section No. XX XX XX page and the list of devices shall be a datasheet corresponding to a device as outlined in item b. above. Datasheets shall be linked to bookmarks and shall be in the same order as the list of devices provided under every section.
 - d. Datasheets within every section shall be linked to a bookmark with the following format: Manufacturer: Supplied model number-Type of device.
 - e. For Section: 17510 Cabinets and Panels, provide shop drawings with bookmarks to main areas of the drawings. Example (Layout, Wiring diagrams, Bill of Materials, Instrumentation).

1.11 ELECTRONIC O&M MANUALS

- A. Subject to acceptance by the City and Engineer, the O&M information may be submitted in part or in whole in an electronic format on optical media.
- B. Electronic O&M manuals shall contain information in standard formats (Searchable Adobe PDF, Word, AutoCAD, HTML, etc.) and shall be easily accessible through the use of standard, "off-the-shelf" software such as an Internet browser.
- C. O&M submittal structure shall follow the same format as the one specified on item 1.12 above, specifically tailored to this Manual.

PART 2 – PRODUCTS

(NOT USED)

PART 3 – EXECUTION

(NOT USED)

- END OF SECTION -

Page 1353 of 2050

SECTION 17040 CONTROL AND INFORMATION SYSTEM TRAINING REQUIREMENTS

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. To familiarize the City's personnel with the process control system and field instrumentation, training shall be provided in accordance with the sequence of construction and project schedule for the startup of plant processes and systems and as detailed hereunder.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 17000 – Control and Information System Scope and General Requirements

1.03 SUBMITTALS

- A. A minimum of 60 days prior to beginning training, submit a detailed training plan describing the following:
 - 1. A listing of all courses to be conducted.
 - 2. Course content.
 - 3. Applicability of each course to management, operations, maintenance, laboratory, etc., personnel.
 - Course schedules.
 - 5. Qualifications and experience of individual(s) providing training.
- B. A minimum of 14 days prior to beginning each training course, submit documentation for use by the City's personnel during training. The training documentation shall be specific to the particular course, and shall include the following:
 - 1. A listing of all subjects to be covered.
 - 2. Course schedule.
 - Documentation/lesson plans covering all subjects to be covered during the course instruction. Information shall be in a "how to" format, with sufficient background documentation and references to manufacturer literature to provide a thorough and clear understanding of the materials to be covered.

1.04 GENERAL REQUIREMENTS

- A. All costs of providing the training courses shall be borne by the Contractor.
- B. As used herein, the term "day" shall mean an eight-hour day, and the term "week" shall mean a five-day, 40-hour week.

- C. Training courses, especially those for operator training, may be required to be scheduled during non-standard business hours (i.e., not between the hours of 8:00 am and 5:00 pm) to accommodate the working schedule of the City's personnel. No additional compensation will be awarded to the Contractor for training at non-standard hours.
- D. All training courses shall complement the experience and skill levels of the City's personnel.
- E. Training courses shall be structured in order to increase capability or security levels. The purpose of this requirement is to allow personnel with lesser training requirements or security password levels to drop out of the training at certain times while the training continues for personnel with greater requirements or higher security levels.
- F. All training courses shall include lectures as well as "hands on" experience for each of the attending personnel. The Contractor shall provide sufficient equipment for this to be accomplished. For example, training in which the instructor uses the computer and the City's personnel passively observe as the instructor demonstrates system functions shall not be acceptable.
- G. Unless otherwise specified, all training courses shall be conducted at the pump station site.
- H. All training shall be completed prior to system acceptance.
- I. Standard manufacturer training courses are acceptable pending approval by the Engineer and City.

1.05 MAINTENANCE TRAINING

- A. A 2-hour course shall be conducted for at least six people prior to the start-up of digital equipment at the City's pump station. Instruction shall be provided in the following:
 - 1. Operating all digital equipment, including system start-up and shutdown procedures.
 - The use of hardware diagnostic routines, test equipment and test procedures as required to enable the City's personnel to detect and isolate system faults to the circuit board or module level and to implement repairs by replacing failed circuit boards or modules.
 - 3. Calibration and routine maintenance procedures for all analog and digital equipment.
- B. Step-by-step written procedures shall be provided for all preventive maintenance tasks and for identifying hardware faults to the circuit board or module level for all items of digital equipment.
- C. All digital equipment preventive and corrective maintenance training activities shall be limited to the use of commercially available off-the-shelf test equipment and to the use of diagnostic routines and hardware items which are the same as those to be provided as part of the system.

1.06 INSTRUMENT TRAINING

A. A 2-hour course shall be provided no more than 30 days prior to system start-up to instruct a minimum of five persons each in the calibration and preventive maintenance of the field instruments provided under this Contract.

PART 2 - PRODUCTS

(NOT USED)

PART 3 - EXECUTION

(NOT USED)

- END OF SECTION -

SECTION 17050 TOOLS, SUPPLIES AND SPARE PARTS - GENERAL

PART 1 – GENERAL

1.01 THE REQUIREMENT

A. The Contractor shall provide tools, supplies, and spare parts as specified herein for the operation and maintenance of the Control and Information System.

1.02 RELATED WORK SPECIFIED ELSEWHERE

- A. Section 01300 Submittals
- B. Section 17000 Control and Information System Scope and General Requirements

PART 2 - PRODUCTS

2.01 TOOLS

- A. Provide special tools, other than those normally found in an electronic technician's toolbox, required to test, diagnose, calibrate, install, wire, connect, disconnect, assemble and disassemble any digital equipment, instrument, panel, rack, cabinet or console mounted equipment for service and maintenance. This shall include, but not be limited to, the following: connector pin insertion and removal tools, wire crimping tools, special wrenches, special instrument calibrators, indicator lamp insertion and removal tools, etc.
- B. Provide tools and test equipment together with items such as instruction manuals, carrying/storage cases, unit battery charger where applicable, special tools, calibration fixtures, cord extenders, patch cords and test leads, which are not specified but are necessary for checking field operation of equipment supplied under this Division.

2.02 SUPPLIES

A. The Contractor shall provide supplies as required in other Sections of Division 17.

2.03 SPARE PARTS

- A. Provide spare parts for items of control and instrumentation equipment as recommended by the manufacturer and in accordance with the Contract Documents.
- B. Furnish all spares in moisture-proof boxes designed to provide ample protection for their contents. Label all boxes to clearly identify contents and purpose.
- C. The Contractor shall replace all spare parts consumed during installation testing, the system availability demonstration, and the guarantee period.
- D. Refer to individual digital hardware and instrument sections for additional requirements specific to those devices.

PART 3 - EXECUTION

(NOT USED)

- END OF SECTION -

SECTION 17060 SIGNAL COORDINATION REQUIREMENTS

PART 1 - GENERAL

1.01 THE REQUIREMENT

- A. The Contractor shall conform to the signal coordination requirements specified herein.
- B. The Contractor shall be responsible for coordinating signal types and transmission requirements between the various parties providing equipment under this Contract. This shall include, but not be limited to, distribution of appropriate shop drawings among the equipment suppliers, the electrical subcontractor and the instrumentation subcontractor.
- C. Analog signals shall be signals for transmitting process variables, etc. from instruments and to and from panels, equipment PLC's and Control System PLC's.
- D. Discrete signals shall consist of contact closures or powered signals for transmitting status/alarm information and control commands between starters, panels, equipment PLC's, the Control System, etc.

1.02 ANALOG SIGNAL TRANSMISSION

- A. Signal transmission between electric or electronic instruments, controllers, and all equipment and control devices shall be individually isolated, linear 4-20 milliamperes and shall operate at 24 volts D.C.
- B. Signal output from all transmitters and controllers shall be current regulated and shall not be affected by changes in load resistance within the unit's rating.
- C. All cable shields shall be grounded at one end only, at the control panel, with terminals bonded to the panel ground bus.
- D. Analog signal isolation and/or conversion shall be provided where necessary to interface with instrumentation, equipment controls, panels, and appurtenances.
- E. Non-standard transmission systems such as pulse duration, pulse rate, and voltage regulated shall not be permitted except where specifically noted in the Contract Documents. Where transmitters with nonstandard outputs do occur, their outputs shall be converted to an isolated, linear, 4-20 milliampere signal.
- F. The Contractor shall provide 24 V power supplies for analog signals and instruments where applicable and as required inside panels, controls, etc.
- G. Where two-wire instruments transmit directly to the Control and Information System, the instrumentation subcontractor shall provide power supplies at the PLC-equipped control panels for those instruments.

H. Where four-wire instruments with on-board loop power supplies transmit directly to the Control and Information System, the instrumentation subcontractor shall provide necessary signal isolators or shall otherwise isolate the input from the Control and Information System loop power supply. Similar provisions shall be made when a third element such as a recorder, indicator, or single loop controller with integral loop power supply is included in the loop.

1.03 DISCRETE INPUTS

- A. All discrete inputs to equipment and Control and Information System PLC's, from field devices, starters, panels, etc., shall be unpowered (dry) contacts in the field device or equipment, powered from the PLC's, unless specified otherwise.
- B. Sensing power (wetting voltage) supplied by the PLC shall be 24 VDC.

1.04 DISCRETE OUTPUTS

- A. All discrete outputs from local control panels and Control and Information System PLC's to field devices, starters, panels, etc., shall be 24 VDC powered (sourced) from PLC's.
- B. PLC powered discrete outputs shall energize 24 VDC pilot relay coils in the field devices, starters, panels, etc. which in turn open or close contacts in the associated control circuit. The 24 VDC relay coil, contacts, and associated control circuitry shall be furnished integral with the field device, starter, panel, etc. by the supplier and contractor furnishing the field device, starter, or panel.
- C. Where required or specified herein, discrete outputs from equipment and Control and Information System PLC's to field devices, starters, panels, motor operated valves, etc., shall be dry contact or relay outputs.

1.05 OTHER DISCRETE SIGNALS

- A. Discrete signals between starters, panels, etc. where no 24 VDC power supply is available may be 120 VAC, as long as such contacts are clearly identified in the starter, panel, etc. as being powered from a different power supply than other starter/panel components.
- B. Where applicable, warning signs shall be affixed inside the starter, panel, etc. stating that the panel is energized from multiple sources.
- C. Output contacts in the starter, panel, etc., that are powered from other locations shall be provided with special tags and/or color-coding. Disconnecting terminal strips shall be provided for such contacts.
- D. The above requirements shall apply to all starters and panels, regardless of supplier.