BROWARD COUNTY GO SOLAR BROWARD COUNTY ENVIRONMENTAL PLANNING AND GROWTH MANAGEMENT DEPARTMENT

BROWARD ROOFTOP SOLAR PHOTOVOLTAIC ROOFTOP MOUNTING SYSTEMS

DRAWING INDEX

COV COVER

ARCHITECTURAL

A1 PLAN VIEW A2 SECTION

A3 SECTIONS

A4 CALCULATIONS

A5 WATERPROOFING DETAILS

CARTAYA & ASSOCIATES ARCHITECTS, P.A.

3077 E. COMMERCIAL BLVD. SUITE 201 FT. LAUDERDALE, FL. 33308 954-771-2724

(ARCHTECTURE)

TY LIN INTERNATIONAL, INC.

201 ALHAMBRA CIRCLE, SUITE 900 CORAL GABLE, FL. 33134 305-567-1888

(STRUCTURAL/M.E.P./ENGINEERING)

3077 E. COMMERCIAL BLVD. SUITE 201 FT. LAUDERDALE, FLORIDA 33308

PHOTOVOLTAIC SYSTEM PROTOTYPE DESIGN
GO SOLAR - BROWARD COUNTY
ENVIRONMENTAL PLANNING AND GROWTH MANAG. DEPT

HEET

DATE OCTOBER 15, 2012

DRAWN BY: YR.

3077 E. COMMERCIAL BLVD. SUITE 201 FT. LAUDERDALE, FLORIDA 33308 771—2724 FAX 776—4280

PHOTOVOLTAIC SYSTEM PROTOTYPE DESIGN
GO SOLAR - BROWARD COUNTY
ENVIRONMENTAL PLANNING AND GROWTH MANAG. DEPT.

FEVECONS:

FEVECONS:

ENV:

PROPERTY OF CARE
A PRINCIPAL OF T

DATE OCTOBER 10, 2012
DRAWN BY YR
CHECKED BY JJ

CALCS

SHEET:

A - 4

4 OF 5

WIND LOAD PRESSURE

Using Rooftop Structures and Equipments (29.5.1 Sheet 308) Broward County

Residential: || risk category. (Table 1.5.1/ Sheet 2)

V= 170 Mph

K_d= 0.85 (Table 26.6-1/ Sheet 250) K_d= 1.0

 $Z=15' \rightarrow K_{s}=0.85$ (Table 29.3-1/ Sheet 310)

 $Z = 20^{\circ} \rightarrow K_{x} = 0.90$

 $Z=25' \rightarrow K_{g}=0.94$

 $Z=30' \rightarrow K_s=0.98$

 $Q = 0.00256 K_1 \times K_2 \times K_3 \times V^2$

 $q_{25} = 53.4 \, lb/ft^2$

q₂₀ = 56.6 lb/ft²

q₂₅ = 59.1 lb/ft²

 $q_{xy} = 61.6 \text{ lb/ft}^2$

Note:

- 1- We use zone 2 for the calculation of wind load, assuming that the panels may be installed in zone 1 and 2.
- 2- We consider that the panels are part of the roof and $GC_{st} = \pm 0.18$ (Worst Condition)

0s7° (Gable Roof) Fig 30.A-2A/ Sheet 336

 $GC_{p123} = +0.3$

 $GC_{n2} = -1.8$ (This coefficient value is the most critical for the upward load.)

7°<8527° (Gable/ Hip Roof) Fig 30.4-28/ Sheet 337)

 $GC_{p123} = +0.5$

GC_{p2} = -1.7

27°<6≤45° (Gables Roof) Fig 30.4-2C/ Sheet 338

 $GC_{p123} = +0.9$ (This coefficient value is the most critical for the downward load.)

GC_{p3} = -1.2

 $\mathbf{P} = \mathbf{q}_n \left[\left(\mathbf{G} \mathbf{C}_p \right) - \left(\mathbf{G} \mathbf{C}_p \right) \right]$

27°<0s45° h = 30′

 $p_{123} = 61.6[0.9-(-0.18)] = +66.5 lb/ft^2$ (Downward Pressure)

057° h = 30°

 $p_2 = 61.6[-1.8-(+0.180] = 122 |b/ft^2|$ (Upward Pressure)

27°<6≤45° (Monoslope roof) Fig 30.4-5A/ Sheet 341

 $GC_{p223} = +0.3$

GC_{p2} = -1.7

CONNECTION DESIGN

Panel Point Spacing 5'-0" Max

Uplift @ Connect

 $F = 122 \frac{lb}{ft^2} \times \frac{5"}{2} \times 4' = 1220 \, lb/Connection/Upward$

4': Max Spacing Anchor

Steel Channel Design

$$M = \frac{F \times a \times b}{l} = \frac{1.22 \times 0.33 \times 1.66'}{2'} = 0.334 \text{ k. ft}$$

$$S_{Req} = \frac{M}{0.6F_y} = \frac{0.334 \times 1.2^y}{0.6 \times 36} = 0.016 n^3 < 0.072 \, n^3 \rightarrow \text{Steel Channel 1}^5/8^x \times \frac{7}{8}^x \times 12 \text{gauge S=0.072} n^3 = 0.037 n^4$$

Model No. P3300

Steel Track Design

$$W = \frac{122lb}{ft^2} \times \frac{5'}{2} = 305 \, lb/ft$$

$$\Delta = \frac{L}{360} = \frac{4' \times 12''}{360} 0.1333''$$

$$I = \frac{5 \times wl^4 \times 1728}{384 \times 29000 \times \Delta} = \frac{5 \times 0.305 \times 4^4 \times 1728}{384 \times 29000 \times 0.1333} = I = 0.46n^4$$

Use: [3x4.1 Steel Channel (!= 1.66n*, S= 1.10 n*)

Steel Bolt Anchor Design

F= 1..22k Tension

 $3/8^{\circ}$ Φ area = $\pi R^2 = 0.1104 n^2$

For A36 Bolt \rightarrow F₀= 58 k/n²

F_t= 0.33F_s= 19.14 k/n²

 $F_{Alloward} = A \times F_t = 0.1104 \times 19.14 \text{ k/n}^2 = 2.1^k > 1.22^k \text{ (Tension)} OK$

SOLAR PANEL ATTACHMENT PLAN VIEW

